Review of Motor Vehicle Exhaust Emissions Particulate Number Concentration: Regulatory Developments and Monitoring Technologies
-
摘要: 环境颗粒物水平对人体健康有紧密的联系,而道路交通排放是城市环境颗粒物的重要来源。随着机动车尾气排放颗粒物质量浓度接近测量下限,灵敏度更高的颗粒物测量手段及评价方法的开发亟需解决。机动车颗粒物排放在过去二十年中受到越来越多的关注,使得全球排放法规发生了许多变化,包括更严格的标准、新指标以及拓展到更广泛的非道路应用领域。这些变化产生了对能够实时测量、高灵敏度、车载仪器的新要求。而颗粒物数量浓度的测量作为评价机动车排放颗粒物污染重要的补充手段,相关法规及研究者们都在不断的探索指标的评价依据和评价方法,综述了这一指标在相关法规中的发展历程,以及针对机动车尾气排放颗粒数浓度现有的测量方法,包括当前和新发展的仪器原理及应用范围进行了综述,为机动车尾气排放颗粒数浓度测量及评价的技术发展提供参考。Abstract: Environmental particulate matter levels are closely linked to human health, with road traffic emissions being a significant source of urban particulate matter. As the mass concentration of particulates in vehicle exhaust approaches the measurement lower limit, the urgent need arises to develop more sensitive methods for measuring and evaluating particulate matter. Over the past two decades, motor vehicle particulate emissions have garnered increasing attention, leading to numerous changes in global emissions regulations. These include stricter standards, new indicators, and expansion to broader off-road applications, necessitating new requirements for real-time, highly sensitive, onboard instruments. The measurement of particulate matter number concentration serves as a crucial supplementary approach to evaluating vehicle emissions pollution. This paper reviews the evolution of this metric in relevant regulations and existing methods for measuring particulate number concentration in vehicle exhaust. It provides an overview of the principles and application ranges of both current and newly developed instruments, offering insights into the technical progression of measuring and evaluating particulate number concentration in motor vehicle exhaust emissions.
-
图 1 粒子从发动机到测量位置的性质变化过程[20]
Figure 1. Transformation process of particle properties from engine to measurement point
表 1 PMP在不同阶段法规的变化及发展情况[19]
Table 1. Changes and developments in PMP regulations across various stages
年份 变化及发展情况 发展变化 2001—2003 广泛的测量技术和抽样系统进行了评估。 / 2004—2006 针对轻型的实验室试验。 评估两种推荐方法(改进的PM质量法,固体颗粒计数法)的可重复性和再现性。 2007—2009 针对重型的实验室试验;
提出了基于直径大于23 nm的固体颗粒计数的测量方法。2011 固体颗粒计数法纳入了轻型柴油车(欧洲5b)的欧洲排放法规。 / 2013 固体颗粒计数法纳入了重型柴油车(欧洲5b)的欧洲排放法规;同时纳入联合国法规83和联合国法规49。 欧盟和瑞士要求进一步调查火花点火发动机的颗粒数排放,特别是在23 nm以下。主要议题包括:
汽油直喷(GDI)车辆的排放。
开发测量23 nm以下颗粒的设备。
更新校准程序(如有必要则更新较小尺寸的校准程序)。
重型发动机型式批准中发动机原始排气颗粒测量。
非废气颗粒排放。2014 扩展到轻型汽油直喷车。 / 2019 对非道路移动机械实施限制;
10 nm的测量方案的提案作为GTR 15的一个选项引入,同时也做好了应用于重型法规的准备。10 nm的测量方案已于2021年提交联合国RDE小组。 表 2 实验室测试系统中,不同方案差异化校准要求的比较。
Table 2. Comparative analysis of differential calibration requirements in laboratory test systems
测试部件 测试参数 原始方案(23 nm) 改进方案(23 nm) 改进方案(10 nm) 挥发性
去除器催化汽提塔 无要求 可能有要求 有要求 进入颗粒物检测器的温度 <35℃ <PNC specs <PNC specs 颗粒物数浓度衰减因子
(particle number concentration reduction factor, PCRF)PCRF50/PCRF100≤ 1.2
PCRF30/PCRF100≤ 1.3PCRF50/PCRF100≤ 1.2
PCRF30/PCRF100≤ 1.3PCRF50/PCRF100≤ 1.2
PCRF30/PCRF100≤ 1.3
PCRF15/PCRF100≤ 2.0挥发性物质去除效率 VREC40,30nm,≥104 #/cm3 > 99.0% VREC40,30nm,≥104 #/cm3 > 99.0% VREC40,≥50nm,1mg /m3 > 99.9% 颗粒数量
计数器测试颗粒材质 无要求 煤烟样或PAO 煤烟样或PAO 线性度 ±10% 斜率±5% 斜率±5% CE认证 41 nm>90% 41 nm>90% 15 nm>90% 校正要求 重合校正<10% 任何内部校正 任何内部校正 表 3 对于PEMS不同粒径颗粒的计数效率要求
Table 3. Counting efficiency requirements for PEMS across different particle sizes
粒径(nm) 计数效率 PEMS-(23 nm) PEMS-(10 nm) 10 / 0.10~0.50 15 / 0.30~0.70 23 0.20~0.60 / 30 0.30~1.20 0.75~1.05 50 0.60~1.30 0.85~1.15 70 0.70~1.30 0.85~1.15 100 0.70~1.30 0.80~1.20 200 0.50~2.00 0.80~2.00 表 4 其他国家法规对于固体颗粒数浓度限制的总结
Table 4. Overview of international regulations on solid particulate number concentration limits
国家 测试系统 轻型 重型 非道路 韩国 实验室 E 6
(柴油,2014)E VI
(柴油,2015)/ 新加坡 实验室 E 6
(柴油,汽油直喷2018)Euro VI (all, 2018) / 印度 实验室 BS VI
(柴油,汽油直喷2020)BS VI (all, 2020) 1 BS V (2024) PEMS CF(还需定义) (2023) CF(还需定义)(2023) / 中国 实验室 CN 5 (D, 2016) 2 / / 实验室 CN 6a (all, 2020) CN VI a (all, 2019) Stage IV (2023) 1 PEMS CN 6b (CF = 2.1, 2023) CN VI b (CF = 2.0, 2021) CF = 2.5 (no SPN) 注:1 2025年强制实施;2北京(2013)和上海(2014)提前实施;BS(Bharat stage,巴拉特时期);CN=China。 表 5 常用的颗粒数量浓度测量设备的相关信息
Table 5. Details of commonly used equipment for particulate number and concentration measurement
名称 原理 是否要求稀释 实时性 粒径范围(nm) 检出限(cm−3) 凝结核粒子计数(CPC) 光学吸收 是 是 否 0 扩散荷电(DC) 扩散 是 是 >23 5000 扫描电迁移率粒径谱仪
(Scanning Mobility Particle Sizer, SMPS)荷电+分级+计数 是 否 3~700 100 微分迁移率谱仪
(Differential Mobility Spectrometer, DMS),
发动机排气颗粒分级机
(Engine Exhaust Particle Sizer, EEPS),
快速集成迁移谱仪
(Fast Integrated Mobility Spectrometer, FIMS)是 是 5~700 1000 电气低压冲击器
(Electrical Low Pressure Impactor, ELPI),
Dekati质量监测
(Dekati Mass Monitor, DMM)是 是 10~10000 1000 -
[1] Health Effects Institute. State of Global Air 2020[Z]. Boston : Health Effects Institute, 2020. [2] Pope C A, Coleman N, Pond Z A, et al. Fine Particulate Air Pollution and Human Mortality: 25+ Years of Cohort Studies[J]. Environ. Res, 2020, 183: 108924. doi: 10.1016/j.envres.2019.108924 [3] 张文阁, 刘巍, 刘俊杰, 等, 环境空气颗粒物质量浓度计量溯源体系的建立[J]. 计量科学与技术, 2022, 66(10): 10-15. [4] Belis C A, Karagulian F, Larsen B R, et al. Critical Review and Meta-Analysis of Ambient Particulate Matter Source Apportionment Using Receptor Models in Europe[J]. Atmos. Environ, 2013, 69: 94-108. doi: 10.1016/j.atmosenv.2012.11.009 [5] European Environment Agency. Air Quality in Europe: 2020 Report[Z]. Luxembourg : Publications Office, 2020. [6] Lorelei de Jesus A, Thompson H, Knibbs L D, et al. Long-Term Trends in PM2.5 Mass and Particle Number Concentrations in Urban Air: The Impacts of Mitigation Measures and Extreme Events Due to Changing Climates[J]. Environ. Pollut, 2020, 263: 114500. doi: 10.1016/j.envpol.2020.114500 [7] Donzelli G, Cioni L, Cancellieri M, et al. The Effect of the COVID-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities[J]. Atmosphere, 2020, 11: 1118. doi: 10.3390/atmos11101118 [8] Fu F, Purvis-Roberts K L, Williams B. Impact of the COVID-19 Pandemic Lockdown on Air Pollution in 20 Major Cities around the World[J]. Atmosphere, 2020, 11: 1189. doi: 10.3390/atmos11111189 [9] Grivas G, Athanasopoulou E, Kakouri A, et al. Integrating in Situ Measurements and City Scale Modelling to Assess the COVID-19 Lockdown Effects on Emissions and Air Quality in Athens, Greece[J]. Atmosphere, 2020, 11: 1174. doi: 10.3390/atmos11111174 [10] Lotrecchiano N, Trucillo P, Barletta D, et al. Air Pollution Analysis during the Lockdown on the City of Milan[J]. Processes, 2021, 9: 1692. doi: 10.3390/pr9101692 [11] De Jesus A L, Rahman M M, Mazaheri M, et al. Ultrafine Particles and PM2.5 in the Air of Cities around the World: Are They resentative of Each Other?[J]. Environ. Int, 2019, 129: 118-135. doi: 10.1016/j.envint.2019.05.021 [12] Chatain M, Alvarez R, Ustache A, et al. Simultaneous Roadside and Urban Background Measurements of Submicron Aerosol Number Concentration and Size Distribution (in the Range 20–800 nm), along with Chemical Composition in Strasbourg, France[J]. Atmosphere, 2021, 12: 71. doi: 10.3390/atmos12010071 [13] Kumar P, Morawska L, Birmili W, et al. Ultrafine Particles in Cities[J]. Environ. Int, 2014, 66: 1-10. doi: 10.1016/j.envint.2014.01.013 [14] Rivas I, Beddows D C S, Amato F, et al. Source Apportionment of Particle Number Size Distribution in Urban Background and Traffic Stations in Four European Cities[J]. Environ. Int, 2020, 135: 105345. doi: 10.1016/j.envint.2019.105345 [15] EPA. Integrated Science Assessment for Particulate Matter[Z]. NC: Environmental Protection Agency: Research Triangle, 2019. [16] Martini G, Giechaskiel B, Dilara P. Future European Emission Standards for Vehicles: The Importance of the UN-ECE Particle Measurement Programme[J]. Biomarkers, 2009, 14: 29-33. doi: 10.1080/13547500902965393 [17] 郭皓天, 韩晓霞, 刘俊杰, 等. 凝结核粒子计数器的研究及校准技术现状[J]. 仪器仪表学报, 2021, 42(7): 1-13. doi: 10.19650/j.cnki.cjsi.J2107848 [18] 刘俊杰, 修宏宇, 国凯, 等. 凝结核粒子计数器的校准研究[J]. 中国计量, 2015(4): 100-102. doi: 10.16569/j.cnki.cn11-3720/t.2015.04.023 [19] Barouch Giechaskiel, Anastasios Melas, Giorgio Martini, et al. Overview of Vehicle Exhaust Particle Number Regulations[J]. Processes, 2021, 9: 2216. doi: 10.3390/pr9122216 [20] Barouch Giechaskiel, Matti Maricq, Leonidas Ntziachristos, et al. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number[J]. Journal of Aerosol Science, 2014, 67: 48-86. doi: 10.1016/j.jaerosci.2013.09.003 [21] Barone T, Storey J, Youngquist A, et al. An analysis of direct-injection spark-ignition (DISI) soot morphology[J]. Atmospheric Environment, 2012, 49: 268-274. doi: 10.1016/j.atmosenv.2011.11.047 [22] Harris S, Maricq M. The role of fragmentation in defining the signature size distribution of diesel soot[J]. Journal of Aerosol Science, 2002, 33: 935-942. doi: 10.1016/S0021-8502(02)00045-9 [23] Herner J, Hu S, Robertson W, et al. Effect of advanced aftertreatment for PM and NOx reduction on heavy-duty diesel engine ultrafine particle emissions[J]. Environmental Science and Technology, 2011, 45: 2413-2419. doi: 10.1021/es102792y [24] Kittelson D. Engines and nanoparticles: a review[J]. Journal of Aerosol Science, 1998, 29: 575-588. doi: 10.1016/S0021-8502(97)10037-4 [25] Giechaskiel B, Arndt M, Schindler W, et al. Sampling of non-volatile vehicle exhaust particles: a simplified guide[Z]. SAE, 2012. [26] McMurry P. The history of CPCs[J]. Aerosol Science and Technology, 2000, 33: 297-322. doi: 10.1080/02786820050121512 [27] Agarwal J, Sem G. Continuous flow, single particle-counting condensation nucleus counter[J]. Journal of Aerosol Science, 1980, 11: 343-357. doi: 10.1016/0021-8502(80)90042-7 [28] Seto T, Okuyama K, de Juan L, et al. Condensation of supersaturated vapors on monovalent and divalent ions of varying size[J]. Journal of Chemical Physics, 1997, 107: 1576-1585. doi: 10.1063/1.474510 [29] Wang J, McNeill V, Collins D, et al. Fast mixing condensation nucleus counter: application to rapid scanning differential mobility analyzer measurements[J]. Aerosol Science and Technology, 2002, 36: 678-689. doi: 10.1080/02786820290038366 [30] Kousaka Y, Endo Y, Muroya Y, et al. Development of a high flow rate mixing type CNC and its application to cumulative type electrostatic particle size analysis[J]. Aerosol Research, 1992, 7: 219-229. [31] Vanhanen J, Mikkilä J, Lehtipalo K, et al. Particle size magnifier for nano-CN detection[J]. Aerosol Science and Technology, 2011, 45: 533-542. doi: 10.1080/02786826.2010.547889 [32] Rongchai K, Collings N. High Temperature condensation particle counter (HT-CPC) [C]. Zurich : Proceedings of the 16th ETH – conference on combustion generated nanoparticles, 2012. [33] Siegmann K, Siegmann H. Fast and reliable “in-situ” evaluation of particles and their surface with special reference to diesel exhaust[Z]. SAE, 2000. [34] Mohr M, Lehmann U, Rutter J. Comparison of mass-based and non-mass-based particle measurement systems for ultra-low emissions from automotive sources[J]. Environmental Science and Technology, 2005, 39: 2229-2238. doi: 10.1021/es049550d [35] Bukowiecki N, Kittelson D, Watts W, et al. Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols[J]. Journal of Aerosol Science, 2002, 33: 1139-1154. doi: 10.1016/S0021-8502(02)00063-0 [36] Ntziachristos L, Polidori A, Phuleria H, et al. Application of a diffusion charger for the measurement of particle surface concentration in different environments[J]. Aerosol Science and Technology, 2007, 41: 571-580. doi: 10.1080/02786820701272020 [37] Olfert J, Kulkarni P, Wang J. Measuring aerosol size distributions with the fast integrated mobility spectrometer[J]. Journal of Aerosol Science, 2008, 39: 940-956. doi: 10.1016/j.jaerosci.2008.06.005 [38] Marjamäki M, Ntziachristos L, Virtanen A, et al. Electrical filter stage for the ELPI [Z]. SAE, 2002. [39] Maricq M. Chemical characterization of particulate emissions from diesel engines: a review[J]. Journal of Aerosol Science, 2007, 38: 1079-1118. doi: 10.1016/j.jaerosci.2007.08.001 [40] Mamakos A, Ntziachristos L, Samaras Z. Evaluation of the Dekati mass monitor for the measurement of exhaust particle mass emissions[J]. Environmental Science and Technology, 2006, 40: 4739-4745. doi: 10.1021/es052302c