留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声波流量计误差因素与技术研究进展

余嘉芸 娄倩男 丁优婷 王赵正 谷云庆

余嘉芸,娄倩男,丁优婷,等. 超声波流量计误差因素与技术研究进展[J]. 计量科学与技术,2024, 68(4): 50-59 doi: 10.12338/j.issn.2096-9015.2023.0336
引用本文: 余嘉芸,娄倩男,丁优婷,等. 超声波流量计误差因素与技术研究进展[J]. 计量科学与技术,2024, 68(4): 50-59 doi: 10.12338/j.issn.2096-9015.2023.0336
YU Jiayun, LOU Qiannan, DING Youting, WANG Zhaozheng, GU Yunqing. Research Progress on Error Factors and Technology of Ultrasonic Flow Meters[J]. Metrology Science and Technology, 2024, 68(4): 50-59. doi: 10.12338/j.issn.2096-9015.2023.0336
Citation: YU Jiayun, LOU Qiannan, DING Youting, WANG Zhaozheng, GU Yunqing. Research Progress on Error Factors and Technology of Ultrasonic Flow Meters[J]. Metrology Science and Technology, 2024, 68(4): 50-59. doi: 10.12338/j.issn.2096-9015.2023.0336

超声波流量计误差因素与技术研究进展

doi: 10.12338/j.issn.2096-9015.2023.0336
基金项目: 国家市场监督管理总局科技计划项目(2020MK192);中国计量大学基本科研业务费项目(2023YW88)。
详细信息
    作者简介:

    余嘉芸(2002-),中国计量大学在读本科生,研究方向:测控技术与仪器,邮箱:258018105@qq.com

    通讯作者:

    谷云庆(1982-),中国计量大学副教授,研究方向:流体计量、流体机械流动理论,邮箱:guyunqing@cjlu.edu.cn

  • 中图分类号: TB937

Research Progress on Error Factors and Technology of Ultrasonic Flow Meters

  • 摘要: 超声波流量计在测量流量上表现出高精度和瞬时测量的优势,具有显著的应用潜力,对于油气安全存储、低损耗运输和公平结算有着重要意义。针对时差法、频率法、互相关法和多普勒法4种流量计算原理方法,分析了高精度超声波流量计工作机理,并从湍流特质、仪表结构和环境因素3个角度揭示流速和温度对流量测量精度的影响,探讨了仪表几何形状变化对流速场干扰,综述了超声波流量计误差因素和减小误差技术办法,为高精度流量计技术创新提供思路指导。
  • 图  1  时差法超声波流量计原理图[12]

    Figure  1.  Schematic diagram of time difference method ultrasonic flow meter[12]

    图  2  多声道布置结构外视图[14]

    Figure  2.  Exterior view of multi-channel structure

    图  3  频差法原理图[18]

    Figure  3.  Schematic diagram of frequency difference method[18]

    图  4  连续波超声多普勒流量测量原理[12]

    Figure  4.  Principle of continuous wave ultrasonic Doppler flow measurement[12]

    图  5  互相关法超声波流量计原理图[24]

    Figure  5.  Schematic diagram of cross-correlation method ultrasonic flow meter[24]

    图  6  超声脉冲的产生[26]

    Figure  6.  Generation of ultrasound pulses

    图  7  管内流体特征

    Figure  7.  Fluid characteristics in the tube

    图  8  多声道超声波流量计[32]

    Figure  8.  Multi-channel ultrasonic flow meter[32]

    图  9  横向截面速度等值线[37]

    Figure  9.  Lateral velocity contour[37]

    图  10  换能器对射直线段速度分布图[37]

    Figure  10.  Velocity distribution diagram of the direct line segment of the transducer[37]

    图  11  截面流速

    Figure  11.  Velocity at the net area

    图  12  整流板结构

    Figure  12.  Rectifier plate structure

    图  13  管道截面流速分布[45]

    Figure  13.  Velocity distribution of the pipeline section[45]

    图  14  温度偏差与解决措施

    Figure  14.  Temperature deviation and solution

  • [1] 万大川, 冯倩倩, 高进胜, 等. 流量计量在“碳达峰、碳中和”的重要意义和前景展望[J]. 工业计量, 2022, 32(S1): 34-37.
    [2] 张淞. 超声波流量计在气体计量中的应用策略[J]. 石化技术, 2023, 30(11): 20-22.
    [3] 李国林, 张泽成, 张雪娜, 等. 泥浆管道的多普勒超声流量计实验[J]. 实验室研究与探索, 2022, 41(9): 26-30,195.
    [4] 赵楠楠, 徐安察, 胡亮, 等. 基于声速追踪的超声波液体流量计量方法[J]. 仪表技术与传感器, 2022(9): 41-46.
    [5] JI B, Park J H, Cho S H. Feasibility study on clamp-on ultrasonic flowmeter based on EMAT[J]. Journal of the Korean Society for Nondestructive Testing, 2018, 38(5): 316-321. doi: 10.7779/JKSNT.2018.38.5.316
    [6] Ren R, Wang H L, Sun X L, et al. Design and implementation of an ultrasonic flowmeter based on the cross-correlation method[J]. Sensors, 2022, 22(19): 7470. doi: 10.3390/s22197470
    [7] Kumar J S, Kamaraj A, Sundaram C K, et al. A comprehensive review on accuracy in ultrasonic flow measurement using reconfigurable systems and deep learning approaches[J]. AIP Advances, 2020, 10(10): 105221. doi: 10.1063/5.0022154
    [8] Sun B, Chen S Z, Liu Q, et al. Review of sewage flow measuring instruments[J]. Ain Shams Engineering Journal, 2021, 12(2): 2089-2098. doi: 10.1016/j.asej.2020.08.031
    [9] 李雪菁, 姚新红, 张进明. 高温液态金属流量在线测量方法与技术综述[J]. 仪器仪表学报, 2022, 43(1): 62-72.
    [10] 宿彬, 张鹏飞, 程东旭, 等. 超声波流量计温度补偿算法研究综述[J]. 现代电子技术, 2023, 46(13): 115-120.
    [11] Li M N, Li Z L, Li C H. In-use measurement of ultrasonic flowmeter based on machine learning[J]. Measurement, 2023, 223: 113721. doi: 10.1016/j.measurement.2023.113721
    [12] Nour A M, Hussain M M. A Review of the real-time monitoring of fluid-properties in tubular architectures for industrial applications[J]. Sensors, 2020, 20(14): 3907. doi: 10.3390/s20143907
    [13] 渠鹏程. 广角时差法超声波明渠流量计的设计[D]. 青岛: 山东科技大学, 2020.
    [14] 刘岩, 魏华彤, 白天, 等. 高精度主给水超声波流量计的不确定度分析方法[J]. 宇航计测技术, 2023, 43(4): 1-7.
    [15] 梁柱志. 南水北调中线配套工程中超声波流量计的应用研究[J]. 河北水利, 2022(8): 46-47.
    [16] 邓山, 赵昕, 张莉, 等. 南水北调工程陶岔站时差法流量计推流技术研究[J]. 人民长江, 2022, 53(4): 86-90.
    [17] 陈武, 黄毅, 力刚, 等. 时差法超声波测流系统在刘老涧泵站的应用分析[J]. 江苏水利, 2022(z2): 61-64.
    [18] 陈亦文, 邱公伟. 超声波流量计的原理、应用和发展[J]. 福建电脑, 2002(9): 34-36.
    [19] Nguyen T H L, Park S. Multi-angle liquid flow measurement using ultrasonic linear array transducer[J]. Sensors, 2020, 20(2): 388. doi: 10.3390/s20020388
    [20] Yoshida T, Furuichi N. Development of controllable volumetric prover for evaluating responsiveness of flowmeter under controlled-transient flows[J]. Measurement, 2023, 208: 112456. doi: 10.1016/j.measurement.2023.112456
    [21] Park J, Kim J, Chang Y, et al. Analysis of the time-velocity curve in phase-contrast magnetic resonance imaging: a phantom study[J]. Computer Assisted Surgery, 2019, 24: 3-12. doi: 10.1080/24699322.2019.1649066
    [22] Zhang H R, Dong F, Tan C. Liquid-solid two-phase flow rate measurement by electrical and ultrasound Doppler sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 7504609.
    [23] 陈芙蓉, 裴锐. 多普勒超声流量计的研究与应用[J]. 仪器仪表用户, 2023, 30(11): 1-3,29.
    [24] 聂仁智, 崔永俊. 基于时差法的超声波液体流量测量系统设计[D]. 太原: 中北大学, 2023.
    [25] 胡玉婷. 基于拟合互相关法的气体超声波流量计计量算法研究[D]. 郑州: 郑州大学, 2021.
    [26] Xu L A, Yang H L, Zhang T, et al. A clamp-on ultrasound cross-correlation flowmeter for liquid/solid two-phase flow measurement[J]. Flow Measurement and Instrumentation, 1994, 5(3): 203-208. doi: 10.1016/0955-5986(94)90021-3
    [27] 柏思忠. 一种λ型互相关时差法超声波流量检测方法[J]. 自动化仪表, 2016, 37(2): 82-85.
    [28] 任大呈, 魏华彤, 刘岩, 等. 探头扰流对多声道超声波流量计测量结果影响研究[J]. 仪表技术与传感器, 2023(2): 110-114.
    [29] Guo S N, Xiang N L, Li B A, et al. Integration method of multipath ultrasonic flowmeter based on velocity distribution[J]. Measurement, 2023, 207: 112388. doi: 10.1016/j.measurement.2022.112388
    [30] Basahel A, Sattari M A, Taylan O, et al. Application of feature extraction and artificial intelligence eechniques for increasing the accuracy of X-ray radiation based two phase flow meter[J]. Mathematics, 2021, 9(11): 1227. doi: 10.3390/math9111227
    [31] Zheng D D, Zhai M X. Study on the channel weight of ultrasonic flowmeter in wet gas measurement[C]. 2022 IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada, 2022: 9806643.
    [32] Kang L, Feeney A, Su R L, et al. Flow velocity measurement using a spatial averaging method with two-dimensional flexural ultrasonic array technology[J]. Sensors, 2019, 19(21): 4786. doi: 10.3390/s19214786
    [33] 白天, 魏华彤, 刘岩, 等. 高温高压对超声流量计表体变形量及测量精度的影响[J]. 自动化与仪表, 2023, 38(4): 112-116,120.
    [34] 邱学孟. 民用超声水表的设计与实现[D]. 成都: 电子科技大学, 2022.
    [35] Ge L, Deng H X, Wang Q, et al. Study of the influence of temperature on the measurement accuracy of transit-time ultrasonic flowmeters[J]. Sensor Review, 2019, 39(2): 269-276. doi: 10.1108/SR-01-2018-0005
    [36] Sahu S, Bhope K, Prajapati A, et al. Sonic velocity measurement in molten Pb-Li (16) at high temperature for ultrasonic flowmeter applications[J]. Flow Measurement and Instrumentation, 2022, 88: 102271. doi: 10.1016/j.flowmeasinst.2022.102271
    [37] 杨宗良, 宿彬, 张勍, 等. 流场因素对超声波气体流量计测量精度影响[J]. 现代电子技术, 2023, 46(15): 89-94.
    [38] Sakhavi N, Nouri N M. Generalized velocity profile evaluation of multipath ultrasonic phased array flowmeter[J]. Measurement, 2022, 187: 110302. doi: 10.1016/j.measurement.2021.110302
    [39] Chen W L, Wu J J, Li C H. The Investigation on the flow distortion effect of header to guarantee the measurement accuracy of the ultrasonic gas flowmeter[J]. Applied Sciences, 2021, 11(8): 3656. doi: 10.3390/app11083656
    [40] Alaeddin M A, Hashemabadi S H, Mousavi S F. Numerical study on the effect of circumferential position of utrasonic transducers on ultrasonic cross-correlation flowmeter performance under asymmetric air flow profile[J]. Ultrasonics, 2021, 115: 106479. doi: 10.1016/j.ultras.2021.106479
    [41] Sakhavi N, Nouri N M. Performance of novel multipath ultrasonic phased array flowmeter using gaussian quadrature integration[J]. Applied Acoustics, 2022, 199: 109004. doi: 10.1016/j.apacoust.2022.109004
    [42] Chen D S, Cao H B, Cui B L. Study on flow field and measurement characteristics of a small-bore ultrasonic gas flow meter[J]Measurement and Control, 2021, 54(5-6): 554-564.
    [43] 温钊. 基于时差法的油流速超声测量方法研究[D]. 北京: 华北电力大学, 2021.
    [44] 姚爽, 宿彬, 杨宗良, 等. 上游弯管对超声波流量计精度影响及整流设计[J]. 仪器仪表学报, 2022, 43(5): 102-109.
    [45] 邵欣, 王涛, 高芦宝, 等. 基于CFD的超声波气体流量计过渡区内流场检测优化研究[J]. 中国测试, 2021, 47(10): 114-122.
    [46] Peng S B, Zhang Y, Zhao W W, et al. Analysis of the influence of rectifier blockage on the metering performance during shale gas extraction[J]. Energy & Fuels, 2021, 35(3): 2134-2143.
    [47] 贾秋红, 桂生, 王坤, 等. 交叉分段差分进化支持向量回归的气体超声流量计测量方法[J/OL]. [2024-03-22]. http://kns.cnki.net/kcms/detail/11.2121.O4.20230410.1134.002.html.
    [48] Xu Z J, Li M H, Han Y Q, et al. Robust flow estimation algorithm of multichannel ultrasonic flowmeter based on random sampling least squares[J]. Sensors, 2022, 22(19): 7660. doi: 10.3390/s22197660
    [49] 樊玉光, 王引, 高琳, 等. 日照辐射对天然气超声波流量计流场修正系数的影响[J]. 计量科学与技术, 2023, 67(3): 56-64,34.
    [50] Lee S H, Choi H J, Choi H M, et al. Performance tests of flowmeters for fuel consumption measurements in fishing vessels[J]. Flow Measurement and Instrumentation, 2021, 80: 101959. doi: 10.1016/j.flowmeasinst.2021.101959
    [51] 顾闽, 孙丽娜, 陈建楠, 等. 超声波流量计于计量设施在线校准的应用[J]. 江苏水利, 2022(5): 60-62,66.
  • 加载中
图(14)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  102
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 录用日期:  2024-01-16
  • 修回日期:  2024-01-12
  • 网络出版日期:  2024-04-01

目录

    /

    返回文章
    返回