Research on Bioaerosol Sampler Testing Methods for Evaluating Sampling Efficiency
-
摘要: 为更好的满足市场上不同类型的微生物气溶胶采样器测试需求,进一步指导生物气溶胶采样器的设计、制造、实际应用,提升国产生物气溶胶采样器的研发水平和测试精度,介绍了通过发生粒子模拟微生物气溶胶测试微生物采样器采样效率的荧光法和计数法两种测试装置的组成、测试方法以及数据处理步骤等。同时采用两种测试方法对国产的AGI-30微生物采样器和安德森六级微生物采样器进行测试,得到两款采样器的采样效率结果,以及不同采样条件对采样效率的影响。数据结果表明,AGI-30微生物采样器的采样效率随着发生颗粒粒径的增大而增加,对5 μm颗粒的采样效率可达90%以上,且随着采样流量的增大,采样效率逐渐减小。此外,采样时间对采样效率也有明显的影响。安德森六级微生物采样器对8种不同粒径的粒子的采样效率均较高,基本在99%左右,存在随着粒径增大,采样效率增大的趋势。此外,通过两种测试方法的比较,可以明确荧光法和计数法与传统微生物培养法相比较更为简便,且测试过程安全、数据可靠,能够快速得到测试结果。同时荧光法与计数法相比实验过程存在较多步骤,且存在荧光淬灭问题,因此两种方法相比较,可优先选择计数法对生物采样器进行采样效率测试。Abstract:
To cater to the diverse testing requirements of bioaerosol samplers in the market, and to advance the design, manufacturing, and practical application of these devices, this paper introduces two testing apparatuses — the fluorescence method and the counting method. These methods simulate microbial aerosols to assess the efficiency of microbial samplers. The composition, methodologies, and data processing steps of both testing devices are detailed. Subsequently, these methods were applied to evaluate the sampling efficiency of the domestically produced AGI-30 bioaerosol sampler and the Anderson six-stage microbial sampler under varying conditions. Results show that the AGI-30 sampler's efficiency increases with particle size, exceeding 90% for 5 μm particles, and decreases with higher flow rates. Sampling time also significantly impacts efficiency. The Anderson sampler exhibited high efficiency across eight particle sizes, approximately 99%, with a tendency to increase with particle size. The comparative analysis reveals that the fluorescence and counting methods, being more convenient than traditional microbial-culture methods, offer safe, reliable, and rapid results. The counting method, having fewer steps and no fluorescence quenching issues, is preferred for evaluating the efficiency of biological samplers. -
Key words:
- metrology /
- bioaerosol /
- samplers /
- sampling efficiency /
- testing methods /
- fluorescent microspheres
-
表 1 AGI-30生物气溶胶采样器采样效率结果
Table 1. Sampling efficiency results of the AGI-30 bioaerosol sampler
序号 AGI-30采样器 粒径(μm) 采样效率(%) 1 1号 1 13.4 2 1号 2 40.2 3 1号 3 36.6 4 1号 5 47.7 5 2号 1 20.6 6 2号 2 47.4 7 2号 3 48.4 8 2号 5 90.8 9 3号 1 25.2 10 3号 2 49.4 11 3号 3 61.9 12 3号 5 90.8 表 2 不同采样时间下AGI-30采样器采样效率
Table 2. Sampling efficiency of the AGI-30 bioaerosol sampler under different sampling times
序号 粒径(μm) 采样时间(min) 采样效率(%) 1 1 5 25.2 2 2 5 49.4 3 3 5 61.9 4 5 5 90.8 5 1 10 10.32 6 2 10 20.46 7 3 10 14.97 8 5 10 8.73 9 1 15 20.6 10 2 15 46.6 11 3 15 26.8 12 5 15 53.3 表 3 不同采样流量下AGI-30采样器采样效率
Table 3. Sampling efficiency of AGI-30 sampler at different acquisition times
序号 粒径(μm) 采样流量(L/min) 采样效率(%) 1 1 6.2 37.6 2 2 6.2 57.4 3 3 6.2 69.2 4 5 6.2 60.6 5 1 9.0 22.4 6 2 9.0 41.8 7 3 9.0 55.4 8 5 9.0 63.5 9 1 12.5 10.32 10 2 12.5 20.46 11 3 12.5 14.97 12 5 12.5 8.73 表 4 AGI-30生物气溶胶采样器采样效率结果
Table 4. Sampling efficiency results of the AGI-30 bioaerosol sampler
粒径(μm) 采样效率(%) 6级 5级 4级 3级 2级 1级 1.5 98.8 73.5 51.4 48.8 38.7 38.5 2.0 99.5 81.8 56.0 50.2 51.5 44.0 2.2 99.5 99.2 78.3 78.7 76.5 77.1 2.5 99.5 99.6 90.1 89.2 87.4 85.2 2.8 99.6 99.4 95.5 92.9 92.0 89.1 3.0 99.7 99.6 92.2 91.6 90.6 88.4 3.5 99.8 99.6 97.4 91.5 90.0 90.3 4.0 98.5 97.8 97.7 90.6 89.3 89.9 -
[1] 杨文慧, 温占波, 于龙, 等. 应用气溶胶发生法评价空气微生物采样器采样效率[J]. 中国消毒学杂志, 2009, 26(3): 245-248. [2] 张惠力, 甄世祺, 周明浩, 等. 生物气溶胶采样技术研究进展[J]. 环境监测管理与技术, 2011, 23(4): 18-21. doi: 10.3969/j.issn.1006-2009.2011.04.005 [3] 梁晓军, 刘凡. 低浓度空气微生物采样与效果评价技术研究进展[J]. 环境与健康, 2011, 28(3): 533-537. [4] 田莹, 张国城, 李晶晶, 等. 生物气溶胶雾化器对大肠杆菌活性影响的评价[J]. 计量学报, 2022, 43(5): 696-700. [5] Bhardwaj J , Hong S , Jang J , et al. Recent advancements in the measurement of pathogenic airborne viruses[J]. Journal of Hazardous Materials, 2021, 420: 126574. [6] King M D, Lacey R E, Pak H, et al. Assays and enumeration of bioaerosols-traditional approaches to modern practices[J]. Aerosol Science and Technology, 2020, 54(5): 611-633. doi: 10.1080/02786826.2020.1723789 [7] Pan Y L, Kalume A, Wang C J, et al. Atmospheric aging processes of bioaerosols under laboratory-controlled conditions: A review[J]. Journal of Aerosol Science, 2021, 155: 1-18. [8] Li M , Wang L , Qi W , et al. Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms[J]. Micromachines, 2021, 12(7): 798. [9] Xie W, Li Y, Bai W, et al. The source and transport of bioaerosols in the air: A review[J]. Frontiers of Environmental Science& Engineering, 2021, 15(3): 1-19. [10] 陈拼. 微生物气溶胶采样器设计及其应用研究[D]. 杭州: 浙江大学, 2018. [11] Lin W H. Evaluation of impingement and filtration methods for yeast bioaerosol sampling[J]. Aerosol Science and Technology, 1999, 30(2): 119-126. doi: 10.1080/027868299304723 [12] Lin W H, Li C S. The Effect of sampling time and flow rates on the bioefficiency of three fungal spore sampling methods[J]. Aerosol Science and Technology, 2007, 28(6): 511-522. [13] Chen B T, Feather G A, Maynard A, et al. Development of a personal sampler for collecting fungal spores[J]. Aerosol Science and Technology, 2004, 38(9): 926-937. doi: 10.1080/027868290511218 [14] Verreault D, Moineau S, Duchaine C. Methods for sampling of airborne viruses[J]. Microbiology and Molecular Biology Reviews, 2008, 72(2): 13-444. [15] Haig C W, Mackay W G, Walker J T, et al. Bioaerosol Sampling: Sampling Mechanisms Bioefficiency and Field Studies[J]. Journal of Hospital Infection, 2016, 93: 242-255. doi: 10.1016/j.jhin.2016.03.017 [16] Kesavan J, Schepers D, McFarland A R. Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers[J]. Aerosol Science and Technology, 2010, 44: 817–829. [17] Willeke K, Grinshpun S A, Chang C W, et al. Inlet sampling efficiency of bioaerosol samplers[J]. Journal of Aerosol Science, 1992, 23(1): 651-654. [18] Lin W H. Collection efficiency and culturability of impingement into a liquid for bioaerosols of fungal spores and yeast cells[J]. Aerosol Science and Technology, 1999, 30(2): 109-118. doi: 10.1080/027868299304714 [19] Grinshpun S A, Willeke K, Ulevicius V, et al. Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers[J]. Aerosol Science and Technology, 1997, 26(4): 326-342. doi: 10.1080/02786829708965434 [20] Lin X J, Willeke K, Ulevicius V, et al. Effect of sampling time on the collection efficiency of all-glass impingers[J]. American Industrial Hygiene Association Journal, 1997, 58(7): 480-488. doi: 10.1080/15428119791012577 [21] Chen Y C, Wang I J, Cheng C C, et al. Effect of selected sampling media, flow rate, and time on the sampling efficiency of a liquid impinger packed with glass beads for the collection of airborne viruses[J]. Aerobiologia, 2021, 37: 243-252. doi: 10.1007/s10453-020-09683-3 [22] Han T, Mainelis G. Design and development of an electrostatic sampler for bioaerosols with high concentration rate[J]. Journal of Aerosol Science, 2008, 39: 1066-1078. doi: 10.1016/j.jaerosci.2008.07.009 [23] Mainelis G, Willeke K, Adhikari A, et al. Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection[J]. Aerosol Science & Technology, 2002, 36(11): 1073-1085. [24] Han B, Hudda N, Ning Z, et al. Efficient collection of atmospheric aerosols with a particle concentrator—electrostatic precipitator sampler[J]. Aerosol Science and Technology, 2009, 43(8): 757-766. doi: 10.1080/02786820902919502 [25] Kim H R , An S , Hwang J . High Air Flow-rate Electrostatic Sampler for the Rapid Monitoring of Airborne Coronavirus and Influenza Viruses[J]. Journal of Hazardous Materials, 2021, 412(2): 125219. [26] Piri A , Kim H R , Park D H , et al. Increased survivability of coronavirus and H1N1 influenza virus under electrostatic aerosol-to-hydrosol sampling[J]. Journal of Hazardous Materials, 2021, 413(11): 125417. [27] Priyamvada H, Kumaragama K, Chrzan A, et al. Design and evaluation of a new electrostatic precipitation-based portable low-cost sampler for bioaerosol monitoring[J]. Aerosol Science Technology, 2021, 55: 24-36. doi: 10.1080/02786826.2020.1812503 [28] Lee D , Jang J , Jang J . Sensitive and highly rapid electrochemical measurement of airborne coronaviruses through condensation-based direct impaction onto carbon nanotube-coated porous paper working electrodes. [J]. Journal of hazardous materials, 2023, 458: 131972. [29] 陈新宇, 毕新慧, 李冰. 细菌气溶胶粒径分布特征的检测方法[J]. 环境科学学报, 2008, 28(3): 589-592. doi: 10.3321/j.issn:0253-2468.2008.03.028 [30] Zhao Y, Aarnink A J A, Doornenbal P, et al. Investigation of the efficiencies of bioaerosol samplers for collecting aerosolized bacteria using a fluorescent tracer. II: sampling efficiency and half-life time[J]. Aerosol Science and Technology, 2011, 45(3): 432-442. doi: 10.1080/02786826.2010.543197