Preliminary Study on Calibration Device for Automatic Monitoring of Water-Soluble Ions in Atmospheric Aerosols
-
摘要: 大气气溶胶水溶性离子自动监测仪为大气研究提供了一种全新的,在线监测大气污染及研究的手段,美国、欧盟已对国外的此类设备提供了测试报告或研制了相应的标准物质,我国目前在这一领域尚无质量控制技术。初步搭建了一种大气气溶胶水溶性离子自动监测仪校准装置,装置包括三个模块:气溶胶发生系统、采样系统、基于HJ799和HJ800原理的自动测试系统。最终以该自动测试系统得到的数据为标准值,给出前端装置的修正值或修正系数。通过实验,分别对三个模块的性能进行了验证,均满足各自在校准装置中承担的功能作用,但由于系统比较复杂,应进一步考察影响装置各模块准确性的因素,提升各模块的效率,得到一套具有稳定特性的校准装置。Abstract: This paper introduces a novel calibration device for automatic monitors of water-soluble ions in atmospheric aerosols, aiming to address the lack of quality control technology in this field in China. While the United States and European Union have already issued test reports or developed standard substances for similar foreign equipment, this research contributes to the local development. The calibration device comprises three modules: an aerosol generation system, a sampling system, and an automatic test system based on the principles of HJ799 and HJ800. The final calibration relies on data from the automatic test system to provide correction values or coefficients for the front-end device. The performance of each module has been experimentally validated, confirming their suitability for the intended calibration roles. Due to the system's complexity, further investigation into factors affecting each module’s accuracy is necessary to enhance efficiency and achieve a stable calibration setup.
-
表 1 PM2.5实验粒子的粒径要求
Table 1. Particle size requirements of PM2.5 experimental particles
实验粒子的空气动力学当量直径Da(μm) 1.5±0.25 2.0±0.25 2.2±0.25 2.5±0.25 2.8±0.25 3.0±0.25 3.5±0.25 4.0±0.5 表 2 标准工作曲线浓度与色谱峰面积的测量结果
Table 2. Measurement results of concentration and chromatographic peak area for the standard working curve
标准工作曲线 浓度(mg/L) 峰面积(μS/cm·s) 1 1 13 2 26 5 67 10 142 2 40 619 45 706 50 785 55 863 60 943 表 3 线性范围、线性方程及相关系数
Table 3. Linear range, linear equation, and correlation coefficient
成分 标准工作曲线 线性方程 相关系数(R) Cl− 1 y=16.11x−22.27 0.99978 2 y=14.37x−2.30 0.99965 表 4 离子色谱单元验证结果
Table 4. Verification results for the ion chromatography unit
标准溶液(mg/L) 测量值(mg/L) 平均值(mg/L) 误差(%) 2 1.99 1.97 −1.5 1.95 1.97 50 51.23 51.08 2.2 50.97 51.04 表 5 滤膜预处理单元及离子色谱单元验证结果
Table 5. Verification results for the filtration membrane pretreatment unit and ion chromatography unit
标准物质浓度
(mg/L)滴至滤膜体积
(mL)去离子水加入量 提取液浓度
(mg/L)测量值
(mg/L)误差
(%)质量(g) 20℃密度(g/mL) 体积(mL) 1000 1.25 23.8545 0.998232 23.90 52.31 50.47 −3.5 24.0142 0.998232 24.06 51.96 50.86 −2.1 25.4053 0.998232 25.45 49.12 47.61 −3.1 表 6 滤膜预处理单元及离子色谱单元样品空白验证结果
Table 6. Sample blank verification results for the filtration membrane pretreatment unit and ion chromatography unit
去离子水加入量 测量值(mg/L) 平均值(mg/L) 质量(g) 20℃密度(g/mL) 体积(mL) 24.6251 0.998232 24.67 0.00 0.00 24.9026 0.998232 24.95 0.00 25.1837 0.998232 25.23 0.00 -
[1] 张小曳. 中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007, 22(1): 12-16. [2] 张宁. 离子色谱法对TSP样品中水溶性无机离子的测定方法研究[J]. 甘肃环境研究与监测, 1993, 6(3): 11-12. [3] 陶俊, 陈刚才, 钟昌琴. 重庆市大气TSP中水溶性无机离子的化学特征[J]. 中国环境监测, 2006, 22(6): 71-74. [4] 余学春, 贺克斌, 马永亮, 等. 气溶胶水溶性无机物及有机物的离子色谱测定[J]. 环境化学, 2004, 23(2): 218-222. [5] 张宁, 洪竹, 李利平. 国内外使用IC法对大气颗粒物中水溶性离子分析的研究进展[J]. 中国环境监测, 2007, 23(5): 14-18. [6] 张宁, 李利平, 王式功, 等. 兰州市城区与和背景点冬季大气气溶胶主要无机离子的组成特征[J]. 环境化学, 2008, 27(4): 498-501. [7] 宋燕, 徐殿斗, 柴之芳. 北京大气颗粒物PM10和PM2.5中水溶性阴离子的组成及特征[J]. 分析试验室, 2006(2): 80-85. [8] European Committee for Standardization. Ambient air - Standard method for measurement of NO3−, SO42−, CI−, NH4+, Na+, K+, Mg2+, Ca2+ in PM2.5 as deposited on filters: EN 16913: 2017 [S]. Brussels: European Committee for Standardization, 2017. [9] 张宁. PM2.5沙尘气溶胶和干湿沉降物的理化特征及源解析研究[J]. 气象出版社, 2016(1): 309. [10] Solomon P A , Hopke P K , Froines J , et al. Key scientific findings and policy- and health-relevant insights from the U. S. Environmental Protection Agency's Particulate Matter Supersites Program and related studies: an integration and synthesis of results. [J]. Journal of the Air & Waste Management Association, 2008, 58(13 Suppl): S3. [11] SIMON P K, DASGUPTA P K. Continuous Automated Measurement of the Soluble Fraction of Atmospheric Particulate Matter[J]. Analytical Chemistry, 1995, 67: 71-78. [12] WYERS P, BRINK H T, BRANDSMA M, et al. Continuous measurements of size distribution atmospheric aerosol, (NH4)2SO4, H2SO4, NH4NO3, HNO3 and NO, NO2, SO2, O3 near Novosibirsk in 1994 - 1995[J]. Journal of Aerosol Science, 1995, 26: S381-S382. doi: 10.1016/0021-8502(95)97098-Y [13] WEBER R J, ORSINI D, DAUN Y, et al. A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition[J]. Aerosol Science & Technology, 2001, 35: 718-727. [14] EMMA G, SANTORO A, SNELL J, et al. CERTIFICATION REPORT The certification of water-soluble ions in a fine dust (PM2.5-like) material: ERM®-CZ110[EB/OL]. [2021-10-25].https://crm.jrc.ec.europa.eu/p/ERM-CZ110. [15] 李想, 许潇. 大气颗粒物水溶性离子计量技术研究概述[J]. 计量科学与技术, 2022, 66(6): 31-37. [16] 环境保护部. 环境空气 颗粒物中水溶性阴离子(F−、Cl−、Br−、NO2−、NO3−、PO43−、SO32−、SO42−) 的测定 离子色谱法: HJ 799-2016[S]. 北京: 中国环境科学出版社, 2016. [17] 环境保护部. 环境空气 颗粒物中水溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+) 的测定 离子色谱法: HJ 799-2016[S]. 北京: 中国环境科学出版社, 2016. [18] Hongxu Duan, Francisco J. Romay, Cheng Li, et al. Generation of monodisperse aerosols by combining aerodynamic flow-focusing and mechanical perturbation[J]. Aerosol Science and Technology, 2016, 50(1): 17-25. doi: 10.1080/02786826.2015.1123213 [19] 国家质量监督检验检疫总局. 气溶胶粒径谱仪校准规范: JJF 1864-2020[S]. 北京: 中国质检出版社, 2020. [20] 白志鹏, 韩金保, 张灿, 等. 气溶胶测量原理、技术及应用(原著第三版)[M]. 北京: 化学工业出版社, 2020: 101. [21] 国家质量监督检验检疫总局. 气溶胶粒径谱仪校准规范: JJG 943-2011[S]. 北京: 中国质检出版社, 2020. [22] Environmental Protection Agency. Protection of Environment, Part 53-Ambient Air Monitoring Reference and Equivalent Methods, Subpart F-Procedures for Testing Performance Characteristics of Class II Equivalent Methods for PM2.5: Title 40 [S]. USA: EPA, 2014. [23] Emanuele C, Maura S, Robert Gussman L, et al. An Evaluation of Sharp Cut Cyclones for Sampling Diesel Particulate Matter Aerosol in the Presence of Respirable Dust[J]. Ann, Occup. Hyg, 2014, 58(8): 995-1005. [24] 环境保护部. PM10采样器技术要求及检测方法: HJ /T 93-2003 [S]. 北京: 中国环境科学出版社, 2003. [25] 环境保护部. 环境空气颗粒物( PM10和PM2.5) 采样器技术要求及检测方法: HJ 93-2013[S]. 北京: 中国环境科学出版社, 2013. [26] 张文阁, 刘巍, 许潇, 等. PM2.5监测仪检测用国家一级标准物质的研制[J]. 计量学报, 2019, 40(1): 159-163. [27] 陈仲辉, 张文阁, 黄星亮, 等. PM2.5切割器切割特性研究[J]. 中国计量, 2014(8): 82-85. [28] CHIH-CHIEH C, SHENG-HSIU H. Shift of Aerosol Penetration in Respirable Cyclone Samplers[J]. AIHAJ, 2010, 60(6): 720-729. [29] Maynard A D, Kenn L C. Performance assessment of three personal cyclone models, using an Aerodynamic Particle Sizer[J]. Journal of Aerosol Science, 1995, 26(4): 671-684. doi: 10.1016/0021-8502(94)00131-H [30] Taekhee L, Seung W K, Willian P, et al. Performance of High Flow Rate Sample for Respirable Particle Collection[J]. Ann. Occlup Hyg, 2010, 54(6): 697-709 . [31] Simon P K, P K Dastupta. Continuous automated measurement of the soluble fraction of atmospheric particulates matter[J]. Anal. Chem, 1995, 67: 71-78. [32] Weber R J , Orsini D , Daun Y , et al. A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition[J]. Aerosol Science and Technology, 2001, 35(3): 718-727.