Uncertainty Evaluation of Piston Gauge Effective Area Using the Monte Carlo Method
-
摘要: 不确定度评定是量值传递工作的重要组成部分,随着JJF 1059.2-2012《用蒙特卡洛法评定测量不确定度》的发布,蒙特卡洛法也越来越多地应用于各计量专业的不确定度评定。基于python语言采用蒙特卡洛法和自适应蒙特卡洛法两种方法编写了计算代码,以100 MPa油介质活塞压力计的校准为例,对活塞有效面积校准结果的不确定度进行了评定,分析计算了各输入量不确定度及概率分布模型对输出量不确定度的影响,并与传统评定方法的结果进行了比较。结果表明:活塞有效面积校准不确定度的主要来源为标准活塞有效面积引入的不确定度,采用蒙特卡洛法的结果与传统评定结果一致,相对扩展不确定度(k=2)均为32 ppm,有效面积校准结果的概率密度分布取决于主要影响量的概率密度分布。Abstract: Uncertainty evaluation is a crucial component in the dissemination of measurement values. Following the publication of JJF 1059.2-2012 "Evaluation of Measurement Uncertainty Using the Monte Carlo Method," this approach has been increasingly applied across various metrological disciplines. Using Python, calculation codes were developed employing both the Monte Carlo method and the adaptive Monte Carlo method. Taking the calibration of a 100 MPa oil-medium piston gauge as an example, the uncertainty of the calibrated effective area was evaluated. The impact of uncertainties and probability distribution models of various input quantities on the output uncertainty was analyzed and compared with results from traditional evaluation methods. The findings indicate that the primary source of uncertainty in the calibration of the piston's effective area is the uncertainty introduced by the standard piston's effective area. Results obtained using the Monte Carlo method align with those from traditional evaluations, both yielding a relative expanded uncertainty (k=2) of 32 ppm. The probability density distribution of the calibrated effective area is determined by the probability density distribution of the main influencing factors.
-
Key words:
- metrology /
- uncertainty evaluation /
- Monte Carlo method /
- piston gauge /
- effective area
-
表 1 各输入量概率分布
Table 1. Probability distribution assignment of all input quantities
不确定度分量 符号 概率密度分布 输入量估计值 标准不确定度
或相对不确定度灵敏度系数 相对不确定度
分量(ppm)标准端添加质量 m 正态分布 10.000158 kg8×10−7 1 0.8 重力加速度 g 正态分布 9.801245 m/s22.0×10−7 1.0×10−2 2.0×10−3 空气密度 $ {\rho _a} $ 正态分布 1.18 kg/m3 2.34×10−4 kg/m3 2.1×10−6 m3/kg 4.91×10−4 标准端添加质量密度 $ \rho $ 正态分布 7984 kg/m35 kg/m3 1.9×10−8 m3/kg 9.5×10−2 标准端温度 t 正态分布 20.71 ℃ 0.045 ℃ 9.0×10−6 ℃−1 0.41 标准端热膨胀系数 $ \alpha $ 矩形分布 9.0×10−6 ℃−1 1.2×10−7 ℃−1 0.71 ℃ 8.5×10−2 压力差测量 $ \Delta p $ 正态分布 3862.96 Pa2 Pa 1/p Pa−1 2/(p/MPa) 标准端活塞有效面积 $ A $ 正态分布 4.90075 ×10−6m21.5×10−5 1.0 15 标准端形变系数 $ \lambda $ 正态分布 7.5×10−7MPa−1 8.5×10−8MPa−1 p MPa (8.5p)×10−2 高度差 $ \Delta h $ 矩形分布 0 m 1×10−3 m 4.5×10−4 m−1 0.45 被测端添加质量 $ m' $ 正态分布 20.000371 kg8×10−7 1.0 0.8 被测端添加质量密度 $ \rho ' $ 正态分布 7852 kg/m35 kg/m3 1.9×10−8 m3/kg 9.5×10−2 被测端温度 $ t' $ 正态分布 21.05 ℃ 0.045 ℃ 9.0×10−6 ℃ 0.41 被测端热膨胀系数 $ \alpha ' $ 矩形分布 9.0×10−6 ℃−1 1.2×10−7 ℃−1 1.05 ℃ 0.13 传压介质密度 $ {\rho _f} $ 正态分布 922.7 kg/m3 0.01 9.8×10−10 9.8×10−6 传压介质表面张力系数 $ \gamma $ 矩形分布 0.031N/m 0.0018N/m 2.11×10−6 m/N 3.8×10−3 合成相对标准不确定度为$ \sqrt {226.9 + 0.00723{p^2} + 4/{p^2}} $ (p单位为MPa) 表 2 各输入量引入的不确定度占比
Table 2. Percentage of uncertainty contribution by each input quantity
不确定度来源 不确定度贡献占比% 标准端添加质量 4.07 重力加速度 <0.01 空气密度 <0.01 标准端添加质量密度 0.47 标准端温度 2.06 标准端热膨胀系数 0.42 压力差测量 0.51 标准端活塞有效面积 76.31 标准端形变系数 8.64 高度差 0.06 被测端添加质量 4.07 被测端添加质量密度 0.49 被测端温度 2.06 被测端热膨胀系数 0.62 传压介质密度 <0.01 传压介质表面张力系数 0.22 表 3 扩展不确定度比较
Table 3. Comparison of expanded uncertainties
MCM GUM 正态分布 30.4ppm 30.4ppm 三角分布 23.6ppm 24.8ppm 矩形分布 28.9ppm 35ppm -
[1] 中国计量测试学会压力专业委员会. 压力测量不确定度评定 [M]. 北京: 中国计量出版社, 2006. [2] 蒋思敬, 姚士春. 压力计量 [M]. 北京: 中国计量出版社, 1991. [3] 姜琛. 天然气流量积算仪检定装置的建立[J]. 计量科学与技术, 2023, 67(2): 42-47. doi: 10.12338/j.issn.2096-9015.2022.0308 [4] 杨世忠, 邢丽娟. 微传感器压力测量系统[J]. 仪表技术与传感器, 2007(8): 64-65. doi: 10.3969/j.issn.1002-1841.2007.08.026 [5] Rab S, Zafer A, Sharma R K, et al. National and Global Status of the High Pressure Measurement and Calibration Facilities[J]. Indian J Pure Appl Phys, 2022, 60(1): 38-48. [6] 郑显锋, 邓鹏波, 张岩. 工业生产中压力测量系统测量结果不确定度研究[J]. 自动化与仪表, 2022, 37(11): 54-57. [7] 郭伟, 罗二平, 刘娟, 等. 血压计计量检定的对比分析式教学设计[J]. 计量科学与技术, 2021, 65(8): 11-14. doi: 10.12338/j.issn.2096-9015.2020.0218 [8] Kumar A, Thakur V N, Zafer A, et al. Contributions of National Standards on the growth of Barometric Pressure and Vacuum Industries[J]. MAPAN-J Metrol Soc India, 2019, 34(1): 13-17. [9] 张妍, 张亚波, 李萌, 等. 航天测试中压力测量技术的应用研究[J]. 现代制造技术与装备, 2021, 57(12): 72-74. doi: 10.3969/j.issn.1673-5587.2021.12.024 [10] 悦进, 杨远超. 10 kPa气体活塞式压力计计量性能测试研究[J]. 计量学报, 2022, 43(4): 512-517. doi: 10.3969/j.issn.1000-1158.2022.04.12 [11] 杨远超, 悦进, 李燕华. CCM. P-K13传递标准的有效面积和形变系数及不确定度分析[J]. 计量学报, 2011, 32(5): 441-445. doi: 10.3969/j.issn.1000-1158.2011.05.11 [12] 曾麟, 杨远超, 悦进, 等. 气体活塞式压力计基准量值传递自动化研究[J]. 计量学报, 2021, 42(10): 1316-1322. doi: 10.3969/j.issn.1000-1158.2021.10.09 [13] 王琛, 刘环宇, 杨远超, 等. 500MPa活塞式压力计活塞系统关键参数设计[J]. 计量学报, 2021, 42(12): 1625-1629. doi: 10.3969/j.issn.1000-1158.2021.12.11 [14] Yang Y C, Driver R G, Quintavalle J S, et al. An integrated and automated calibration system for pneumatic piston gauges[J]. Measurement, 2019, 134: 1-5. doi: 10.1016/j.measurement.2018.10.050 [15] Choi I M, Woo S Y, Man J, et al. APMP key comparison of absolute pressure from 10 kPa to 110 kPa (APMPMP-K9)[J]. Metrologia, 2020, 57(1A): 3. [16] 杨远超. 活塞压力计自动化校准方法研究[J]. 计量学报, 2017, 38(6): 708-712. doi: 10.3969/j.issn.1000-1158.2017.06.11 [17] Thakur V N, Sharipov F, Yang Y C, et al. Evaluation of effective area of air piston gauge with limitations in piston-cylinder dimension measurements[J]. Metrologia, 2021, 58(3): 9. [18] Prazak D, Hajduk T, Krajicek Z, et al. Analytical solutions of some model cases of piston-cylinder assemblies[J]. Measurement Science and Technology, 2022, 33(2): 9. [19] Yang Y C, Yue J. Calculation of Effective Area for the NIM Primary Pressure Standards[J]. PTB Mitteilungen, 2011, 121(3): 266-269. [20] 靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131. doi: 10.12338/j.issn.2096-9015.2020.9002 [21] 国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国标准出版社, 2012. [22] 王为农. 校准: 定义的解读和结果的测量不确定度表达[J]. 计量科学与技术, 2023, 67(2): 58-61. doi: 10.12338/j.issn.2096-9015.2022.0225 [23] 费业泰. 误差理论与数据处理[M]. 第7 版. 北京: 机械工业出版社, 2015: 84-91. [24] 倪育才. 实用测量不确定度评定[M]. 第6 版. 北京: 中国标准出版社, 2020: 108-109. [25] JCGM. Evaluation of measurement data —Supplement 1 to the “Guide to the expression of uncertainty in measurement”-Propagation of distributions using a Monte Carlo method: JCGM 101: 2008[S]. JCGM, 2008. [26] 国家质量监督检验检疫总局. 用蒙特卡洛法评定测量不确定度: JJF 1059.2-2012[S]. 北京: 中国标准出版社, 2012. [27] 尹跃, 梁兴忠, 陈杰, 等. 基于ISO GUM法的温度巡检仪测量不确定度的研究[J]. 计量科学与技术, 2023, 67(1): 60-67. doi: 10.12338/j.issn.2096-9015.2022.0229 [28] 刘芳, 张路楠, 刘莹, 等. 蒙特卡洛自适应法评定测量不确定度的程序设计[J]. 计量技术, 2018(5): 64-68. [29] 刘存成. 基于EXCELVBA用蒙特卡洛法评定测量不确定度[M]. 北京: 中国质检出版社, 2015: 3-4. [30] 胡芸, 刘剑, 白兴, 等. 改进的蒙特卡洛方法用于烟丝近红外光谱定量分析中奇异样本的识别[J]. 中国烟草学报, 2023, 29(6): 1-8. [31] 位恒政, 王为农, 裴丽梅, 等. 面向任务的坐标测量机测量不确定度评价方法[J]. 计量科学与技术, 2021, 65(5): 115-119,54. doi: 10.12338/j.issn.2096-9015.2020.9053 [32] 毕佳明, 武利庆, 杨彬, 等. 采用GUM和MCM法对重量—容量法溶液配制结果不确定度评定的比较研究[J]. 计量技术, 2012(5): 70-72. [33] Novikov N V. Monte Carlo Computer Simulation Method for Solving the Problem of Particle Passage Through Matter[J]. J Surf Ingestig, 2023, 17(3): 712-723. doi: 10.1134/S1027451023030291 [34] Zhang D Y. The Principle and Application of Monte Carlo Simulation in Public Health, Finance, and Physics, proceedings of the 2nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC), March 25-27, 2022 [C]. Bellingham: Spie-Int Soc Optical Engineering, 2022. [35] Cumber P S. Evaluating View Factors Using a Hybrid Monte-Carlo Method[J]. J Heat Transf-Trans ASME, 2022, 144(12): 11. [36] Singh J, Kumaraswamidhas L A, Vijay A, et al. Estimation of uncertainty of effective area of a pneumatic pressure reference standard using Monte Carlo method[J]. Indian J Pure Appl Phys, 2016, 54(12): 755-764. [37] 郭有光, 黄大伦, 方永源, 等. NIM-Ⅱ型可移激光绝对重力仪[J]. 地球物理学报, 1988, 31(1): 73-81,121. [38] 国家质量监督检验检疫总局. 砝码: JJG 99-2022[S]. 北京: 中国标准出版社, 2022. [39] Thakur V N, Yadav S, Kumar A. Evaluation of Uncertainty in the Effective Area and Distortion Coefficients of Air Piston Gauge Using Monte Carlo Method[J]. MAPAN-J Metrol Soc India, 2019, 34(3): 371-377. [40] Olson D A. NIST calibration services for pressure using piston gauge standards [R]. Gaithersburg, MD: National Institute of Standards and Technology, 2009: 47-48. [41] Vergne P. New high pressure viscosity measurements on the di 2 ethyl hexyl sebacate and comparisons with previous data[J]. High Temp-High Press, 1990, 22: 613-621. [42] 国家质量监督检验检疫总局. 液体活塞式压力计: JJG 59-2022[S]. 北京: 中国标准出版社, 2022.