Methodological Study of Carbon Emission Reduction for Coal Oxy-Fuel Combustion Power Generation Project
-
摘要: 煤富氧燃烧技术对于燃煤发电高效降碳极具现实意义,然而对于煤富氧燃烧发电项目碳减排量尚无明确核算方法。参考清洁发展机制(CDM)工作规范和温室气体减排方法学一般思路,通过确定基准线情景,建立核算边界,根据碳排放特点按照固定源燃烧和烟气脱硫过程两个阶段进行了碳排放计算;利用方法学工具对煤富氧燃烧发电项目进行了额外性论证,结果表明,项目活动仍需要相关碳减排、碳交易政策的支持方能维系,离成熟商业化运营还有较大发展差距,项目活动具有额外性;结合碳流与核算方法实际应用场景,确定了项目活动过程中碳排放主体核算过程,为煤富氧燃烧发电项目碳减排核证、碳交易政策的制定提供了碳减排量核算方法学支撑。最后,应用该方法计算了2×300 MW燃煤发电机组进行富氧燃烧技术改造后产生的年碳减排量可达百万吨级。Abstract: Coal oxy-fuel combustion technology is of great practical significance for efficient carbon reduction in coal-fired power generation. However, there is no clear accounting method for carbon emission reduction in coal oxy-fuel combustion generation project. This study refers to the norms of the Clean Development Mechanism (CDM) and the general ideas of greenhouse gas (GHG) emission reduction methodology, and establishes the accounting boundary by determining the baseline scenario. Then the author calculates the carbon emission according to the characteristics of the carbon emission in accordance with the two phases of stationary source combustion and flue gas desulphurization. After that, the author uses the methodology tools to demonstrate the additionality of the coal oxy-fuel combustion generation project, and the results show that the project activity still needs the support of the relevant carbon emission reduction and trading policies to be sustained, which is still far from the mature commercial operation. The project activity has additionality. Combing with the practical application scenario of the carbon flow and accounting methodology, it determines the main accounting process of carbon emission in the process of the project activity, and provides methodological support for the verification of carbon emission reduction in coal oxy-fuel combustion generation projects and the formulation of carbon trading policies. Finally, the methodology is applied to calculate the annual carbon emission reductions of up to one million tones generated by the retrofit of 2×300 MW coal-fired generating units with oxy-fuel combustion technology.
-
表 1 边界内包括或者不包括的温室气体种类
Table 1. GHG categories included or excluded from the boundary
排放源 温室气体种类 是否包括 理由 基准线 燃料固定燃烧的基准线排放量 CO2 是 燃煤电厂烟气重要成分 CH4 否 与主要排放源相比占比可忽略不计 N2O 否 经脱硝装置被脱除,排放量可忽略 脱硫过程直接排放 CO2 是 主要排放与核算气体 项目活动 燃料固定燃烧的项目排放量 CO2 是 烟气主要成分,项目活动不能100%捕集 CH4 否 与主要排放源相比占比可忽略不计 N2O 否 与主要排放源相比占比可忽略不计 脱硫过程直接排放 CO2 是 主要排放与核算气体 表 2 2×300 MW燃煤电厂在空气气氛与富氧气氛下两种工况参数
Table 2. Parameters of 2×300 MW coal-fired power plant in air atmosphere and oxy-fuel atmosphere under two operating conditions
参数 符号 空气工况 富氧燃烧 消耗的原煤量(t/a) Wcoal 1075200 1024100 燃料收到基加权平均含碳量(wt%) Car 62.45 62.45 燃料收到基灰分(wt%) Aar 22.30 22.30 灰渣平均含碳量(wt%) H 3.04 2.57 脱硫剂的消耗量(t/a) Wde 26853.12 25576.90 脱硫剂中碳酸盐含量(wt%) Hcar 90 90 脱硫转化效率(%) ηde 100 100 完全转化时脱硫过程排放因子(tCO2/t) kde 0.44 0.44 上网电量(MWh) G 3348000 2455000 表 3 碳排放计算结果
Table 3. Carbon emission calculation results
碳排放/碳捕集 符号 空气工况 富氧燃烧 固定燃烧排放(t/a) EFC 2435302.48 2323497.85 脱硫过程排放(t/a) EFGD 10633.84 10128.45 捕集量(t/a) WCOM - 1652000 总排放量(t/a) Ey 2445936.32 681626.30 单位上网电力排放(t/MWh) ey 0.73 0.28 总减排量(t/a) ERy - 1111914.22 -
[1] Intergovernmental Panel on Climate Change. Climate Change 2023 Synthesis Report[R/OL]. IPCC, 2023. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf. [2] World Health Organization. State of Climate in 2021: Extreme events and major impacts[R/OL]. WMO, 2021. https://public-old.wmo.int/en/media/press-release/state-of-climate-2021-extreme-events-and-major-impacts. [3] 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80. [4] 张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 清华大学, 2023. [5] Talieh R, Joris V, Yves M, et al. Carbon capture and utilization for industrial applications[J]. Energy Reports, 2023, 9: 111-116. [6] Francisco C M, Reinhold S, Kristina F, et al. Oxy-fuel combustion technology for cement production-State of the art research and technology development[J]. International Journal of Greenhouse Gas Control, 2016, 45: 189-199. doi: 10.1016/j.ijggc.2015.12.014 [7] Thomas H, Duncan L, Nicholas F, et al. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting[J]. Environmental Science & Technology, 2016, 50: 368-377. [8] Yusra K, May W, Armin S, et al. Oxygen enrichment combustion to reduce fossil energy consumption and emissions in hot rolling steel production[J]. Journal of Cleaner Production, 2021, 320: 128714. doi: 10.1016/j.jclepro.2021.128714 [9] Jose R S, Francisco J A, Luis M G, et al. Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system[J]. Energy, 2022, 255: 124419. doi: 10.1016/j.energy.2022.124419 [10] B J P B, L K E, C D S, et al. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science, 2005, 31(4): 283-307. doi: 10.1016/j.pecs.2005.07.001 [11] Ioannis H, George K, Andreas P. Assessment of oxy-fuel power generation technologies[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2637-2644. doi: 10.1016/j.rser.2009.07.001 [12] 郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23): 3856-3864. [13] 刘建华. 国内燃煤锅炉富氧燃烧技术进展[J]. 热力发电, 2020, 49(7): 48-54. [14] 国家气候战略中心. 温室气体自愿减排项目设计与实施指南[EB/OL]. https://ccer.cets.org.cn/notice/noticeDetail?bulletinInfoId=1174755335156666368. [15] 国家市场监督管理总局, 国家认证认可监督管理委员会. 温室气体自愿减排项目审定与减排量核查实施规则[EB/OL]. https://www.samr.gov.cn/zw/zfxxgk/fdzdgknr/rzjgs/art/2023/art_bb5b6265d5564d7396a733353a957770.html. [16] 国家标准化委员会. 基于项目的温室气体减排量评估技术规范 通用要求: GB/T 33760-2017[S]. 北京: 中国标准出版社, 2017. [17] 国家标准化委员会. 温室气体排放核算与报告要求 第1部分: 发电企业: GB/T 32151.1-2015[S]. 北京: 中国标准出版社, 2015. [18] 国家发展改革委员会. 中国发电企业温室气体排放核算方法和报告指南(试行)[EB/OL]. https://www.gov.cn/gzdt/att/att/site1/20131104/001e3741a2cc13e13f1101.pdf. [19] 生态环境部. 企业温室气体排放核算与报告指南 发电设施[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/W020221221671986519778.pdf. [20] 河北省生态环境厅, 河北省科学技术厅. 河北省碳捕集项目减排量核算方法学[EB/OL]. https://hbepb.hebei.gov.cn/zycms/ewebeditor/uploadfile/20230727171653940.pdf. [21] 于海琴, 李进, 安洪光, 等. 火力发电企业CO2排放量和减排分析[J]. 北京交通大学学报, 2010, 34(3): 101-105. [22] 王萍萍, 赵永椿, 张军营, 等. 双碳目标下燃煤电厂碳计量方法研究进展[J]. 洁净煤技术, 2022, 28(10): 170-183. [23] CDM Executive Board. AM0063: Recovery of CO2 from tail gas in industrial facilities to substitute the use of fossil fuels for production of CO2 --- Version 1.2. 0[EB/OL]. https://cdm.unfccc.int/UserManagement/FileStorage/FU7KL21BISPVHGQCRD906A5YWNET34. [24] CDM Executive Board. ACM0013: Construction and operation of new grid connected fossil fuel fired power plants using a less GHG intensive technology --- Version 5.0. 0[EB/OL]. https://cdm.unfccc.int/UserManagement/FileStorage/2BMR6X7ZP3TY89NAWUOI4EGHDK1QFS. [25] 卫冬丽. 中国燃煤电厂二氧化碳排放量计算方法研究[D]. 北京: 北京交通大学, 2016. [26] 龙芸. 燃煤电厂CO2排放计算模型与方法研究[D]. 重庆: 重庆大学, 2016. [27] 国家标准化委员会. 工业企业温室气体排放核算和报告通则: GB/T 32150-2015[S]. 北京: 中国标准出版社, 2015. [28] 世界资源研究所. 中国燃煤电厂温室气体排放计算工具指南[M]. 华盛顿, 2013. [29] 世界资源研究所. 能源消耗引起的温室气体排放计算工具指南(2.1版)[M]. 华盛顿, 2013. [30] 生态环境部. 温室气体自愿减排项目方法学编制大纲[EB/OL]. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.mee.gov.cn%2Fxxgk2018%2Fxxgk%2Fxxgk06%2F202303%2FW020230330530211367217.doc&wdOrigin=BROWSELINK. [31] CDM Executive Board. Methodological tool 02: Combined tool to identify the baseline scenario and demonstrate additionality Version 07.0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-02-v2.2.pdf. [32] CDM Executive Board. Methodological tool 01: Tool for the demonstration and assessment of additionality Version 07.0. 0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-01-v5.2.pdf. [33] CDM Executive Board. Methodological tool 23: Additionality of first-of-its-kind project activities Version 03.0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-23-v1.pdf. [34] CDM Executive Board. Methodological tool 03: Tool to calculate project or leakage CO2 emissions from fossil fuel combustion Version 03.0[EB/OL]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-03-v2.pdf. [35] 刘德顺. 额外性论证评价工具(第03版)要点分析[EB/OL]. https://www.cdm.ccchina.org.cn/WebSite/CDM/UpFile/2007/200742384843490.pdf. [36] R Notz, I Tönnies, G Scheffknecht, et al. CO2 Capture for fossil fuel fired power plants[J]. Chemie Ingenieur Technik, 2010, 82(10): 1619-1818. doi: 10.1002/cite.201090089 [37] Guicai L, Grzegorz L. Cu-based oxygen carriers for chemical looping processes: Opportunities and challenges[J]. Fuel, 2023, 342: 127828. doi: 10.1016/j.fuel.2023.127828 [38] 王金星, 孙宇航. 化学链燃烧技术的研究进展综述[J]. 华北电力大学学报(自然科学版), 2019, 46(5): 100-110. [39] Dalal A, Ezzat K. Current status and future scenarios of carbon capture from power plants emission: a review[J]. Reviews in Environmental Science and Bio/Technology, 2023, 22(3): 799-822. doi: 10.1007/s11157-023-09663-2 [40] Uchida T, Yamada T, Watanabe S, et al. Application and demonstration of Oxy-fuel combustion technologies to the existing power plant in Australia[C]. Cleaner Combustion and Sustainable World, 2012. [41] 郭军军, 张泰, 李鹏飞, 等. 中国煤粉富氧燃烧的工业示范进展及展望[J]. 中国电机工程学报, 2021, 41(4): 1197-1208,1526. [42] Madejski P, Chmiel K, Subramanian N, et al. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies[J]. Energies, 2022, 15(3): 887-908. doi: 10.3390/en15030887 [43] 李振山, 陈虎, 李维成, 等. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561. [44] 华中科技大学. 35MW富氧燃烧工业示范[EB/OL]. http://combustion.energy.hust.edu.cn/info/1032/1010.htm. [45] 郑蕾, 张蕾, 康子晋, 等. 石灰和石灰石反应特性研究[C]. 中国动力工程学会第三届青年学术年会, 2005. [46] 洪巧巧. 燃煤电厂烟气脱硫脱硝除尘技术生命周期评价[D]. 杭州: 浙江大学, 2015. [47] Wang Y, Zhao Y C, Zhang J Y, et al. Technical-economic evaluation of O2/CO2 recycle combustion power plant based on life-cycle[J]. Science China Technological Sciences, 2010, 53: 3284-3293. doi: 10.1007/s11431-010-4164-4 [48] 孔红兵. 600 MW富氧燃烧系统建模分析优化及经济性评估[D]. 武汉: 华中科技大学, 2012. [49] 宋卫宁. 常规及富氧时300 MW燃煤电厂煤粉燃烧与烟气脱碳的过程模拟[D]. 北京: 北京交通大学, 2012. [50] 陈紫涵. 350 MWe富氧燃烧系统集成优化与性能综合评价[D]. 武汉: 华中科技大学, 2023. [51] Guo J J, Liu Z H, Huang X H, et al. Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler[J]. Fuel, 2017, 187: 315-327. doi: 10.1016/j.fuel.2016.09.070