Present Status of Monoenergetic Neutron Production Technology and Reference Radiation Fields
-
摘要: 中子是研究原子核结构、核反应规律、粒子物理、天体物理和物质结构的重要工具,广泛应用于能源、材料、生命科学、医疗健康、辐射防护和半导体等领域。其中,单能中子在电离辐射计量和核能应用领域发挥着越来越重要的作用,因此各国国家计量院和核科学研究机构均建有单能中子参考辐射场。中国计量科学研究院将在未来3至5年内新建这一装置,以完善我国中子计量体系,开展中子物理基础研究和服务各界对单能中子的相关需求。基于最新版本的ISO
8529 -1:2021,针对中国计量科学研究院建设单能中子参考辐射场的需求,梳理和计算了单能中子领域最常用的五种核反应在中子能量、中子产额、中子角分布和伴生γ射线本底等方面的参数,整理了现有单能中子参考辐射场的概况和特点,介绍了单能中子参考辐射场常用的主要设备,并给出了中国计量科学研究院拟建单能中子参考辐射场的重要参数。Abstract: Neutrons are essential tools for studying nuclear structure, nuclear reaction laws, particle physics, astrophysics, and material structure. They are widely applied in fields such as energy, materials, life sciences, medical health, radiation protection, and semiconductors. Monoenergetic neutrons, in particular, play an increasingly crucial role in ionizing radiation metrology and nuclear energy applications. Consequently, national metrology institutes and nuclear research facilities worldwide have established monoenergetic neutron reference radiation fields. The National Institute of Metrology, China (NIM) plans to construct such a facility within the next 3 to 5 years to enhance China's neutron metrology system, conduct fundamental neutron physics research, and meet the diverse needs for monoenergetic neutrons across various sectors. Based on the latest ISO 8529-1:2021 standard and in response to NIM's requirements for building a monoenergetic neutron reference radiation field, this paper reviews and calculates parameters for the five most common nuclear reactions used in monoenergetic neutron production. These parameters include neutron energy, neutron yield, neutron angular distribution, and accompanying γ-ray background. The paper also summarizes the current status and characteristics of existing monoenergetic neutron reference radiation fields, introduces the primary equipment commonly used in these fields, and provides important parameters for the proposed monoenergetic neutron reference radiation field at NIM. -
图 3 入射粒子为2.926MeV质子,靶为0.005 mg·cm−2金属钪时,核反应45Sc(p, n)45Ti中子产额随出射角度变化趋势
Figure 3. The trend of neutron yield from the nuclear reaction 45Sc(p, n)45Ti with the emission angle when the incident particles are protons with energy of 2.926MeV and the target is scandium with mass thickness of 0.005 mg·cm−2
表 1 用于确定中子测量仪器能量响应的中子辐射
Table 1. Neutron radiations for determining the response of neutron-measuring devices as a function of neutron energy
中子能量/MeV 产生方式 0.002 反应堆钪过滤中子束或利用加速器通过45Sc(p,n)45Ti反应产生的中子 0.008* 利用加速器通过45Sc(p,n)45Ti反应产生的中子 0.024* 反应堆铁-铝过滤中子束或利用加速器通过45Sc(p,n)45Ti和7Li(p,n)7Be反应产生的中子 通过改变角度,45Sc(p,n)45Ti反应可产生0.024MeV和0.027MeV中子 还可通过使用124Sb-Be(γ,n)核素中
子源产生0.0228 MeV中子0.144 反应堆硅过滤中子束或利用加速器通过T(p,n)3He和7Li(p,n)7Be反应产生的中子 0.25 利用加速器通过T(p,n)3He和7Li(p,n)7Be
反应产生的中子0.565 利用加速器通过T(p,n)3He和7Li(p,n)7Be
反应产生的中子1.2 利用加速器通过T(p,n)3He反应产生的中子 2.5 利用加速器通过T(p,n)3He反应产生的中子 2.8 利用加速器通过D(d,n)3He反应产生的中子 5.0 利用加速器通过D(d,n)3He反应产生的中子 14.8 利用加速器通过T(d,n)4He反应产生的中子 17.0* 利用加速器通过T(d,n)4He反应产生的中子 19.0 利用加速器通过T(d,n)4He反应产生的中子 注:* ISO 8529 -1:2021推荐中子能量点相较前一版本的修订之处,另一处修改为将热中子移出该表。表 2 产生单能中子的5种常用核反应及其重要参数
Table 2. Five nuclear reactions used to produce monoenergetic neutrons and their important parameters
核反应 反应能/MeV Eth/MeV ${E}_{\mathrm{t}\mathrm{h}}' $/MeV 激发态或
三体反应激发态或三体
反应阈能/MeV0°单能中子
能量范围/MeV180°单能中子
能量范围/MeV45Sc(p,n)45Ti −2.8444 2.9081 2.9095 45Sc(p,n)45Ti* 2.9461 0.0055 ~ 0.0530.000 ~ 0.023 7Li(p,n)7Be −1.644 1.881 1.920 7Li(p,n)7Be* 2.378 0.12 ~ 0.65 0.00 ~ 0.19 T(p,n)3He −0.764 1.109 1.148 T(p,np)D 8.355 0.29 ~ 7.59 0.00 ~ 1.70 D(d,n)3He +3.269 0.000 0.000 D(d,np)D 4.451 2.45 ~ 7.71 2.45 ~ 1.64 T(d,n)4He +17.589 0.000 0.000 T(d,np)T 3.711 14.03 ~ 20.46 14.03 ~ 11.76 表 3 单能中子参考辐射场所在机构
Table 3. Institutes with monoenergetic neutron reference radiation fields
中子能量/MeV 核反应 靶 机构 0.002 45Sc(p,n)45Ti Sc IRSN 0.008 45Sc(p,n)45Ti Sc FRS 0.024 45Sc(p,n)45Ti Sc IRSN 7Li(p,n)7Be LiF NIMJ LiOH PTB 0.027 45Sc(p,n)45Ti Sc FRS, NPL 0.144 7Li(p,n)7Be LiF CIAE, FRS, IRSN, KIGAM, NIMJ, NPL LiOH PTB 0.250 7Li(p,n)7Be LiF CIAE, FRS, IRMM, IRSN, KIGAM, NPL LiOH PTB 0.565 7Li(p,n)7Be LiF CIAE, FRS, IRMM, IRSN, KIGAM, NIMJ, NPL LiOH PTB 1.2 T(p,n)3He Ti(T) CIAE, FRS, IRMM, IRSN, NPL, PTB 2.5 T(p,n)3He Ti(T) FRS, IRMM, IRSN, KIGAM, NPL, PTB D(d,n)3He Ti(D) NIMJ 2.8 T(p,n)3He Ti(T) IRSN D(d,n)3He Ti(D) IRSN 5.0 D(d,n)3He Ti(D) IRMM, IRSN, NIMJ, NPL D2-gas FRS, PTB 8.0 D(d,n)3He Ti(D) IRMM D2-gas PTB 9Be(α,n)12C Be NIMJ 14.8 T(d,n)4He Ti(T) FRS, IRMM, IRSN, NIMJ, PTB 16.5 T(d,n)4He Ti(T) IRMM, NPL 17.0 T(d,n)4He Ti(T) N/A 19.0 T(d,n)4He Ti(T) IRMM, IRSN, PTB 表 4 单能中子参考辐射场实验大厅和加速器参数表
Table 4. Parameters for the experimental halls and accelerators of the monoenergetic neutron reference radiation fields
机构 实验厅长×宽×高(m) 加速器 CIAE 13.5×10×7 2×1.7MV Tandetron FRS 16.5×11.5×12.5 4MV Pelletron IRMM NA 7MV Van de Graaff IRSN 20×20×16 2×2MV Tandetron KIGAM 7.6×7.5×6.6 2×1.7MV Tandem NIMJ 11.5×11.5×11.5 4MV Pelletron和Cockcroft-Walton NPL 24×18×18 3.5MV Van de Graaff PTB 30×24×14 2×2MV Tandetron 表 5 中国计量科学研究院拟建单能中子参考辐射场能量点
Table 5. Neutron energies of the monoenergetic neutron reference radiation field to be built at the National Institute of Metrology, China
中子能量点/MeV 核反应 靶 角度 0.002 45Sc(p,n)45Ti Sc 70° 0.008 45Sc(p,n)45Ti Sc 70° 0.024 45Sc(p,n)45Ti Sc 40° 7Li(p,n)7Be LiF 76.5° 0.144 7Li(p,n)7Be LiF 0° 0.25 7Li(p,n)7Be LiF 0° 0.565 7Li(p,n)7Be LiF 0° 1.2 T(p,n)3He Ti(T) 0° 2.5 T(p,n)3He Ti(T) 0° 2.8 T(p,n)3He Ti(T) 0° 5 D(d,n)3He Ti(D) 0° 8* 9Be(α,n)12C Be 0° 14.8 T(d,n)4He Ti(T) 0° 17 T(d,n)4He Ti(T) 0° 19 T(d,n)4He Ti(T) 0° 注:*非单能中子。 -
[1] KARL-HEINRICH BECKURTS, KARL WIRTZ. Neutron Physics[M]. 1st ed. Springer, 1964. [2] MARION J B, FOWLER J L, MARSHAK R E, et al. Fast Neutron Physics: Part 1, Techniques[J]. Physics Today, 1960, 13(8): 36-38. [3] REUSS P. Neutron Physics[M]. EDP Sciences, 2008. [4] 丁大钊, 叶春堂, 赵志祥. 中子物理学——原理、方法与应用[M]. 第2 版. 北京: 原子能出版社, 2005. [5] 卢希庭. 原子核物理[M]. 北京:原子能出版社, 2000. [6] NOLTE R, THOMAS D J. Monoenergetic fast neutron reference fields: I. Neutron production[J]. Metrologia, 2011, 48(6): S263. doi: 10.1088/0026-1394/48/6/S04 [7] NOLTE R, THOMAS D J. Monoenergetic fast neutron reference fields: II. Field characterization[J]. Metrologia, 2011, 48(6): S274. doi: 10.1088/0026-1394/48/6/S05 [8] THOMAS D J, NOLTE R, GRESSIER V. What is neutron metrology and why is it needed?[J]. Metrologia, 2011, 48(6): S225. doi: 10.1088/0026-1394/48/6/S01 [9] YANG J K, WANG P Q, REN Z G, et al. Comparison of neutron energy spectrum unfolding methods and evaluation of rationality criteria[J]. Nuclear Science and Techniques, 2022, 33(12): 164. doi: 10.1007/s41365-022-01139-2 [10] 陈军, 王志强, 刘毅娜, 等. 0.144~1.2 MeV单能中子参考辐射场的建立[J]. 原子能科学技术, 2007, 41(3): 262-267. [11] GRESSIER V, ASSELINEAU B, GUERRE-CHALEY J F, et al. AMANDE ACCELERATOR PERFORMANCES[C]. Proceedings of International Workshop on Fast Neutron Detectors and Applications — PoS(FNDA2006), 2007. [12] GRESSIER V, GUERRE-CHALEY J F, LACOSTE V, et al. AMANDE: a new facility for monoenergetic neutron fields production between 2 keV and 20 MeV[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 49-52. doi: 10.1093/rpd/nch185 [13] MATSUMOTO T, HARANO H, SHIMOYAMA T, et al. Characterisation of kilo electron volt neutron fluence standard with the 45Sc(p, n)45Ti reaction at NMIJ[J]. Radiation Protection Dosimetry, 2007, 126(1-4): 155-158. doi: 10.1093/rpd/ncm033 [14] 林敏, 叶宏生, 夏文, 等. CIAE电离辐射计量技术发展回顾[J]. Atomic Energy Science and Technology, 2020, 54: 322-341. [15] LAMIRAND V, GRESSIER V, MARTIN A, et al. Comparison of nuclear reactions for the production of monoenergetic neutron fields with energies below 100 keV[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1112-1115. [16] TANIMURA Y, YOSHIZAWA M, SAEGUSA J, et al. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 85-89. doi: 10.1093/rpd/nch197 [17] TANIMURA Y, SAEGUSA J, SHIKAZE Y, et al. Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA[J]. Radiation Protection Dosimetry, 2007, 126(1-4): 8-12. doi: 10.1093/rpd/ncm004 [18] COGNET M A, GRESSIER V. Development of a measurement reference standard for neutron energies between 1 MeV and 20 MeV using time of flight method at the AMANDE facility[J]. Metrologia, 2010, 47(4): 377. doi: 10.1088/0026-1394/47/4/004 [19] A M B , B M T , A T I , et al. Development of monoenergetic neutron calibration fields between 8 keV and 15 MeV - ScienceDirect[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 376(1): 115-123. [20] SHIMOYAMA T, HARANO H, MATSUMOTO T, et al. Development of the fast neutron standard using a Be(α, n) reaction at the National Metrology Institute of Japan[J]. Radiation Protection Dosimetry, 2007, 126(1-4): 130-133. doi: 10.1093/rpd/ncm028 [21] KIM G dong, WOO H J, HONG W, et al. Fast neutron facility of KIGAM[J]. Journal of the Korean Physical Society, 2007, 51: 24-29. doi: 10.3938/jkps.51.24 [22] 李玮, 陈军, 李春娟, 等. keV 能区单能中子参考辐射场核反应靶设计[J]. 原子能科学技术, 2013(10): 1670-1673. [23] HARANO H, MATSUMOTO T, TANIMURA Y, et al. Monoenergetic and quasi-monoenergetic neutron reference fields in Japan[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1076-1082. [24] COSACK M, LESIECKI H, HUNT J B. Monoenergetic neutrons from the 45Sc(p, n)45Ti reaction[R/OL]. http://inis.iaea.org/search/search.aspx?orig_q=RN:18075601. [25] COSACK M, LESIECKI H, HUNT J B. Monoenergetic neutrons of energies from 05 kev to 40 kev via the reaction 45Sc(p, n)45Ti: 92-825-5617-4[R/OL]. http://inis.iaea.org/search/search.aspx?orig_q=RN:18019329. [26] NOLTE R , Böttger R , Giesen U , et al. Neutron Beams and Neutron Metrology at the PTB Ion Accelerator Facility PIAF and at the iThemba Labs Neutron Beam Facility[Z]. 2014. [27] GRESSIER V, PELCOT G, POCHAT J L, et al. New IRSN facilities for neutron production[J]. Proceedings of the tenth Symposium on Radiation Measurements and Applications, 2003, 505(1): 370-373. [28] BUNCE M, THOMAS D, ROBERTS N, et al. Plans for neutron metrology at NPL[J]. Journal of Physics: Conference Series, 2020, 1643(1): 012201. doi: 10.1088/1742-6596/1643/1/012201 [29] DROSG M, SCHWERER O. Production of monoenergetic neutrons between 0.1 and 23 MeV Neutron energies and cross-sections[M]. International Atomic Energy Agency (IAEA), 1987. [30] GULDBAKKE S, Dietz E, Kluge H, et al. PTB neutron fields for the calibration of neutron sensitive devices[Z]. 1994. [31] MISHRA G, THOMAS R G, KUMAR A, et al. Schemes for producing multi-energy fast neutrons using a low-energy ion accelerator[J]. Journal of Instrumentation, 2021, 16(9): T09003. doi: 10.1088/1748-0221/16/09/T09003 [32] LAMIRAND V, THOMAS D J, GRESSIER V, et al. Study of scandium targets for production of monoenergetic neutron fields with energies below 100 keV[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1116-1119. [33] ROGERS D W O. The 45Sc(p, n) reaction as a source of monoenergetic 10–50 keV neutrons[J]. Nuclear Instruments and Methods, 1977, 142(3): 475-478. doi: 10.1016/0029-554X(77)90685-1 [34] BREDE H J, COSACK M, DIETZE G, et al. The Braunschweig accelerator facility for fast neutron research: 1: Building design and accelerators[J]. Nuclear Instruments and Methods, 1980, 169(3): 349-358. doi: 10.1016/0029-554X(80)90928-3 [35] GRESSIER V. Review of neutron calibration facilities and monitoring techniques: new needs for emerging fields[J]. Radiation Protection Dosimetry, 2014, 161(1-4): 27-36. doi: 10.1093/rpd/nct328 [36] LACOSTE V. Review of radiation sources, calibration facilities and simulated workplace fields[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1083-1089. [37] CHEN J, WANG Z, RONG C, et al. International key comparison of neutron fluence measurements in mono-energetic neutron fields: CCRI(III)-K10[J]. Metrologia, 2007, 44(1A): 06005. doi: 10.1088/0026-1394/44/1A/06005 [38] NOLTE R, ALLIE M S, BÖTTGER R, et al. Quasi-monoenergetic neutron reference fields in the energy range from thermal to 200 MeV[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 97-102. doi: 10.1093/rpd/nch195 [39] JONES D T L. Monoenergetic neutron sources below 100MeV[J]. 8th International Symposium on Radiation Physics - ISRP8, 2001, 61(3): 469-472. [40] FOWLER J L, BROLLEY J E. Monoenergetic Neutron Techniques in the 10- to 30-Mev Range[J]. Rev. Mod. Phys., 1956, 28(2): 103-134. doi: 10.1103/RevModPhys.28.103 [41] ISO. Reference neutron radiations — Part 1: Characteristics and methods of production: ISO 8529-1: 2001(E)[S]. ISO, 2001. [42] ISO. Neutron reference radiations fields — Part 1: Characteristics and methods of production: ISO 8529-1: 2021(E)[S]. ISO, 2021. [43] NONE. Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations. International evaluation Co-operation, Volume 26[Z]. 2008. [44] LESIECKI H, COSACK M, SIEBERT B R L. Target scattering in the production of monoenergetic neutrons at accelerators[J]. International Atomic Energy Agency (IAEA), 1987: 274-278. [45] KLEIN H, BREDE H J, SIEBERT B R L. Energy and angle straggling effects in a D(d, n) 3He neutron source using a gas target[J]. Nuclear Instruments and Methods in Physics Research, 1982, 193(3): 635-644. doi: 10.1016/0029-554X(82)90262-2 [46] NEUMANN S, Guldbakke S, Matzke M, et al. Photon spectrometry in monoenergetic neutron fields[Z]. 2001. [47] LANGNER F, Loeb S, Nolte R, et al. Photon contribution to ambient dose equivalent H*(10) in the wide-spectrum neutron reference fields of the IRSN [Z]. 2007. [48] DROSG M. DROSG-2000: Neutron source reactions. Data files with computer codes for 56 monoenergetic neutron source reactions[Z]. 2000. [49] L ̈ OVESTAM G. EnergySet[EB/OL]. 2009. http://irmm.jrc.ec.europa.eu/about IRMM/laboratories/ Pages/the van de graaff laboratory.aspx. [50] EVERT B, GOERAN L N E. NeuSDesc-Neutron Source Description Software Manual[EB/OL]. 2009. https://api.semanticscholar.org/CorpusID:65220911. [51] SCHLEGEL D, GULDBAKKE S. Why Do We Need TARGET?[C]. Berlin : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Application, 2001. [52] LISKIEN H, PAULSEN A. Neutron production cross sections and energies for the reactions T(p, n)3He, D(d, n)3He, and T(d, n)4He[J]. Atomic Data and Nuclear Data Tables, 1973, 11: 569-619. doi: 10.1016/S0092-640X(73)80081-6 [53] LISKIEN H, PAULSEN A. Neutron production cross sections and energies for the reactions 7Li(p, n)7Be and 7Li(p, n)7Be*[J]. At. Data Nucl. Data Tables, 1975, 15(1): 57-84. doi: 10.1016/0092-640X(75)90004-2 [54] KLEIN H, BARRENSCHEEN H J, DIETZE G, et al. The Braunschweig accelerator facility for fast neutron research II. Data acquisition and analysis[J]. Nuclear Instruments and Methods, 1980, 169(3): 359-367. doi: 10.1016/0029-554X(80)90929-5 [55] AXTON E J , Robertson, J C, RYVES T B. Proposed Neutron Flux-Density Standards at the National Physical Laboratory[Z]. 1967. [56] BÖTTGER R, GULDBAKKE S, KLEIN H, et al. Problems associated with the production of monoenergetic neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 282(1): 358-367. [57] MARION J B, YOUNG F C. NUCLEAR REACTION ANALYSIS. GRAPHS AND TABLES [EB/OL]. 1968. https://www.osti.gov/biblio/4835829. [58] ROBERTS N J, TAGZIRIA H, THOMAS D J. Determination of the effective centres of the NPL long counters. [R/OL]. (2004-11). http://eprintspublications.npl.co.uk/3130/. [59] HUNT J B. The Calibration and Use of Long Counters for the Accurate Measurement of Neutron Flux Density[M]. National Physical Laboratory, 1976. [60] EISENHAUER C M, HUNT J B, SCHWARTZ R B. Calibration Techniques for Neutron Personal Dosimetry[J]. Radiation Protection Dosimetry, 1985, 10: 43-57. doi: 10.1093/oxfordjournals.rpd.a079410