Research Progress on CO2 Isotope Measurement Based on Infrared Absorption Spectroscopy
-
摘要: 全球气候变暖形势加剧,温室气体排放是关键因素之一。二氧化碳作为主要温室气体,对其高精度监测技术是实现温室气体追踪的基础。在此基础上监测二氧化碳同位素组份,不仅可以实现高精度浓度监测,还能够区分不同排放源的碳循环过程贡献,实现人为排放和自然排放的追踪和溯源。发展高精度二氧化碳同位素监测技术对提升碳排放清单准确性,优化碳减排措施等具有重要意义。在自然界中,碳同位素气体浓度通常为大气浓度的10−6倍,并受测量条件的影响,这导致了碳同位素测量难度加大。综述了红外吸收光谱技术测量二氧化碳稳定同位素浓度的研究进展,分析了高灵敏度稳频光腔衰荡光谱技术的原理及研究进展,并展望了稳定同位素光谱研究的未来方向。光腔衰荡光谱技术作为新兴光学检测技术,克服了传统方法测量精度不足、灵敏度低等缺陷,或成为新一代温室气体及同位素丰度测量标准方法。Abstract: The global warming situation has intensified, and greenhouse gas emissions are one of the key factors. Carbon dioxide, as the main greenhouse gas (GHG), requires high-precision monitoring technology as the basis for GHG tracking. On this basis, monitoring the carbon dioxide isotope composition not only enables high-precision concentration monitoring but also allows for distinguishing the contributions of different emission sources to the carbon cycle process, achieving the tracking and traceability of anthropogenic and natural emissions. Developing high-precision carbon dioxide isotope monitoring technology is of great significance for improving the accuracy of carbon emission inventories and optimizing carbon emission reduction measures. In nature, carbon isotope gas concentrations are usually on the order of 10−6 of atmospheric concentrations and are affected by measurement conditions, which leads to increased difficulty in carbon isotope measurements. This paper reviews the research progress of infrared absorption spectroscopy techniques for measuring carbon dioxide stable isotope concentrations, analyzes the principles and research progress of high-sensitivity frequency-stabilized cavity ring-down spectroscopy (FS-CRDS), and provides an outlook on the future direction of stable isotope spectroscopy research. As an emerging optical detection technology, FS-CRDS overcomes the shortcomings of traditional methods, such as insufficient measurement accuracy and low sensitivity, and may become a new generation of standard methods for measuring GHGs and isotope abundance.
-
Key words:
- metrology /
- greenhouse gases /
- cavity ring-down spectroscopy /
- carbon dioxide /
- stable isotopes
-
表 1 各光谱参数及含义
Table 1. Spectral parameters and their meanings
参数 单位 物理含义 v0 cm−1 谱线跃迁中心波数 ΓD cm−1 由分子热运动引起的多普勒展宽 γ0=Γ0/P cm−1/atm 单位大气压时所有分子速度平均后的碰撞展宽 δ0=Δ0/P cm−1/atm 单位大气压时所有分子速度平均后的碰撞偏移 γ2=Γ2/P cm−1/atm 单位大气压时依赖于分子运动速度的碰撞展宽 δ2=Δ2/P cm−1/atm 单位大气压时依赖于分子运动速度的碰撞偏移 β=vVC/P cm−1/atm 单位大气压时分子碰撞导致分子速度
分布改变引起的多普勒展宽的减小量η -- 分子碰撞引起的速度改变与内部
状态改变间的耦合参数ξ=Yl/P cm−1/atm 一阶线形混叠效应参数的压力系数 S cm/molec 谱线强度 表 2 近年16O13C16O光谱参数代表性研究
Tab. 2 Recent research on 16O13C16O spectral parameters 年份 作者 波数/(cm−1) 光谱技术 跃迁带支 主要成果 2004 Ding[39] 1480~1630 CRDS 相较之前金星大气光谱参数测量精度提高近十倍 2006 Kasyutich[40] 6228.4362 OA-ICOS 30012←00001 P16e 实现该技术测量结果近千分之一精度 2006 Wahl[41] 6261.5~6262.4 CRDS 发现波长测量噪声扭曲同位素测量吸收峰导致误差 2008 Wehr[42] 4978.0226 CEAS 20011←00001 P16e 实现该技术测量结果精度降至千分之一以下 2009 Zare[43] 6251.3169 CRDS 30012←00001 R12e 证明该技术测量精度已接近质谱技术测量精度 2011 Long[45] 6270.2491 CRDS 30012←00001 R50e 实现实验拟合线强与实测跃迁线强相差1—4% 2013 李相贤[33,34] 1800~4000 FTIR 改进FTIR技术并实现同位素丰度测量精度0.57‰ 2013 陆燕[48] 12436.4 CRDS 10051←00001 P16 实现1cm−1扫描范围同时分辨率提高到0.003cm−1 2017 夏滑[49] 3648.9193 CRDS 10011←00001 R22e 在弱吸收谱线区域测得大气二氧化碳同位素丰度 2018 Kiseleva[47] 6114.8580 CRDS 30014←00001 P6e 证明弹性碰撞不会导致单根谱线发生Dicke窄化 2018 韩荦[51] 2310.3472 OA-ICOS 00011←00001 R40e 实现该技术测量二氧化碳跃迁精度0.17‰ 2020 张熙[50] 6252.6235 CRDS 30012←00001 实现仪器等噪吸收系数达4×10−12cm−1Hz−1/2 2023 张志荣[52] 3641.0311 OA-ICOS 10011←00001 R10e 实现了大气13CO2气体测量精度0.3‰ -
[1] 梁苗. 中国气象局气象探测中心: 聚力攻坚温室气体观测关键技术研发及应用[Z]. 2024-01-08. [2] 王海峰, 宋小平, 李佳. 采用燃料分析法计量化石燃料燃烧产生的碳排放量[J]. 计量科学与技术, 2023, 67(7): 3-10. [3] LINDSEY R. Climate Change: Atmospheric Carbon Dioxide[EB/OL].https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide. [4] 余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24. [5] 周枫然, 舒慧, 杨扬仲夫, 等. 应对双碳目标的降碳与计量技术研究进展[J]. 计量科学与技术, 2023, 67(9): 15-24. [6] 磨昕玥, 毕哲, 范晓辉, 等. 碳中和目标下碳捕集、利用和封存技术的计量检测需求及挑战[J]. 计量科学与技术, 2023, 67(9): 3-14. doi: 10.12338/j.issn.2096-9015.2023.0249 [7] 郭振, 王小龙, 任健, 等. 二氧化碳排放连续在线监测过程的模拟与不确定度评定[J]. 计量学报, 2022, 43(1): 120-126. doi: 10.3969/j.issn.1000-1158.2022.01.19 [8] 毕哲, 宋小平, 巢静波, 等. 国际计量委员会环境与气候变化战略分析[J]. 计量科学与技术, 2023, 67(2): 3-12. [9] 郭瑞民. 气体光谱计量技术研究进展[J]. 计量科学与技术, 2022, 66(10): 52-56. doi: 10.12338/j.issn.2096-9015.2022.0145 [10] 曹军, 汪琦, 徐政, 等. 我国环境空气中温室气体监测技术研究进展[J]. 环境监控与预警, 2022, 14(1): 1-6. [11] 马路遥, 林俊, 张亮, 等. 温室气体浓度监测的光腔衰荡光谱研究进展[J]. 计量学报, 2022, 43(2): 274-280. doi: 10.3969/j.issn.1000-1158.2022.02.22 [12] 王星, 周泽义. 基于光腔衰荡光谱法测量CO2结果的不确定度分析[J]. 计量技术, 2016(11): 3-6. [13] DEMTRöDER W. Laser spectroscopy[M]. Springer, 1982. [14] 邹冰妍, 林鸿, 张亮, 等. 点排放源中二氧化碳浓度的测量研究[J]. 计量学报, 2019(2): 246-251. doi: 10.3969/j.issn.1000-1158.2019.02.12 [15] 赵欣月, 林鸿, 杨雷, 等. 1.6微米附近氮气展宽的一氧化碳分子线形的研究[J]. 计量学报, 2016, 38(1): 13-18. [16] 白冰, 陈国柱, 杨文斌, 等. CRDS-CARS-PLIF技术精确定量测量火焰OH浓度实验研J]. 光谱学与光谱分析, 2023, 43(12): 3955-3962. [17] 马若梦, 林鸿, 张亮, 等. 基于多次反射直接吸收精确测量二氧化碳浓度的研究[J]. 计量学报, 2020, 41(4): 425-429. doi: 10.3969/j.issn.1000-1158.2020.04.06 [18] 马路遥, 马若梦, 祝晓轶, 等. 基于 Herriott 吸收池的固定源二氧化碳浓度测量研究[J]. 计量学报, 2022, 43(3): 416-419. doi: 10.3969/j.issn.1000-1158.2022.03.18 [19] 任颐杰, 颜昌翔. 增强吸收光谱技术的研究进展及展望[J]. 中国光学, 2023, 16: 1-20. [20] 杨娜娜, 方波, 王春晖, 等. 中红外波长调制离轴积分腔输出光谱技术应用于OH自由基高灵敏度探测研究[J]. 光子学报, 2023, 52(3): 286-294. [21] 徐毓阳, 余锦, 貊泽强, 等. 腔衰荡吸收光谱技术的研究进展及典型应用[J]. 激光与光电子学进展, 2021, 58(19): 1900001. [22] 张怀林, 吴涛, 何兴道. 基于QCL的红外吸收光谱技术的研究进展[J]. 光谱学与光谱分析, 2019, 39(9): 2751-2757. [23] Lehmann K K, Berden G, Engeln R. An introduction to cavity ring-down spectroscopy[J]. Cavity Ringdown Spectroscopy Techniques and Applications, 2009, 1: 1-26. [24] Lin H, Reed Z D, Sironneau V T, et al. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161: 11-20. doi: 10.1016/j.jqsrt.2015.03.026 [25] 刘建学. 实用近红外光谱分析技术[M]. 北京: 科学出版社, 2008. [26] 李相贤, 高闽光, 徐亮, 等. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究[J]. 物理学报, 2013, 62(3): 30202-030202. [27] Rothman L S. History of the HITRAN Database[J]. Nature Reviews Physics, 2021, 3(5): 302-304. doi: 10.1038/s42254-021-00309-2 [28] Keeling C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et cosmochimica acta, 1958, 13(4): 322-334. doi: 10.1016/0016-7037(58)90033-4 [29] Keeling C D. The concentration and isotopic abundances of carbon dioxide in rural and marine air[J]. Geochimica et Cosmochimica Acta, 1961, 24(3-4): 277-298. doi: 10.1016/0016-7037(61)90023-0 [30] Becker J F, Sauke T B, Loewenstein M A X. Stable isotope analysis using tunable diode laser spectroscopy[J]. Applied Optics, 1992, 31(12): 1921-1927. doi: 10.1364/AO.31.001921 [31] Campargue A, Bailly D, Teffo J L, et al. The ν1+ 5ν3Dyad of12CO2and13CO2[J]. Journal of Molecular Spectroscopy, 1999, 193(1): 204-212. doi: 10.1006/jmsp.1998.7718 [32] Cooper D E, Martinelli R U, Carlisle C B, et al. Measurement of 12CO2: 13CO2 ratios for medical diagnostics with 1.6-μm distributed-feedback semiconductor diode lasers[J]. Applied Optics, 1993, 32(33): 6727-6731. doi: 10.1364/AO.32.006727 [33] 李相贤, 徐亮, 高闽光, 等. CO2及其碳同位素比值高精度检测研究[J]. 物理学报, 2013, 62(18): 180203. doi: 10.7498/aps.62.180203 [34] 王乐新, 赵志敏, 姚红兵, 等. 血液的红外吸收光谱分析及应用研究[J]. 光谱学与光谱分析, 2002, 22(6): 980-982. doi: 10.3321/j.issn:1000-0593.2002.06.029 [35] 李相贤, 罗桂山, 徐亮, 等. δ13CO2值傅里叶变换红外光谱检测标准尺度校准方法[J]. 红外与激光工程, 2015, 44(10): 2959-64. doi: 10.3969/j.issn.1007-2276.2015.10.015 [36] Orr B J, He Y. Cavity Ring-Down Spectroscopy with a continuous-wave laser and a rapidly swept optical cavity[C]. International Quantum Electronics Conference. Optica Publishing Group, 2000. [37] He Y, Orr B J. Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity[J]. Chemical Physics Letters, 2000, 319(1-2): 131-137. doi: 10.1016/S0009-2614(00)00107-X [38] Crosson E R, Ricci K N, Richman B A, et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath[J]. Analytical Chemistry, 2002, 74(9): 2003-2007. doi: 10.1021/ac025511d [39] Ding Y, Macko P, Romanini D, et al. High sensitivity cw-cavity ringdown and Fourier transform absorption spectroscopies of 13CO2[J]. Journal of Molecular Spectroscopy, 2004, 226(2): 146-160. doi: 10.1016/j.jms.2004.03.009 [40] KASYUTICH V L, MARTIN P A, HOLDSWORTH R J. An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the (CO2)-C−12/(CO2)-C−13 measurement[J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85(2-3): 413-420. doi: 10.1007/s00340-006-2312-0 [41] WAHL E H, FIDRIC B, RELLA C W, et al. Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide[J]. Isotopes in Environmental and Health Studies, 2006, 42(1): 21-35. doi: 10.1080/10256010500502934 [42] WEHR R, KASSI S, ROMANINI D, et al. Optical feedback cavity-enhanced absorption spectroscopy for in situ measurements of the ratio 13C: 12C in CO2[J]. Applied Physics B, 2008, 92(3): 459-465. doi: 10.1007/s00340-008-3086-3 [43] ZARE R N, KURAMOTO D S, HAASE C, et al. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance[J]. Proceedings of the National Academy of Sciences, 2009, 106(27): 10928-10932. doi: 10.1073/pnas.0904230106 [44] Hodges J T, Layer H P, Miller W W, et al. Frequency Stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy[J]. Review of Scientific Instruments, 2004, 75(4): 849-863. doi: 10.1063/1.1666984 [45] LONG D A, OKUMURA M, MILLER C E, et al. Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios[J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 105(2): 471-477. doi: 10.1007/s00340-011-4518-z [46] KISELEVA M, MANDON J, PERSIJN S, et al. Line strength measurements and relative isotopic ratio 13C/12C measurements in carbon dioxide using cavity ring down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204: 152-158. doi: 10.1016/j.jqsrt.2017.09.021 [47] Fleisher A J, Yi H, Srivastava A, et al. Absolute 13C/12C isotope amount ratio for Vienna PeeDee Belemnite from infrared absorption spectroscopy[J]. Nature Physics, 2021, 17(8): 889-893. doi: 10.1038/s41567-021-01226-y [48] 陆燕. 高分辨光腔衰荡光谱研究部分大气分子的振转谱带[D]. 合肥: 中国科学技术大学, 2013. [49] 夏滑, 董凤忠, 韩荦, 等. 中红外波段大气碳同位素激光吸收光谱研究[J]. 光谱学与光谱分析, 2017, 37(11): 3365-3369. [50] 张熙. 近红外CO2精密分子光谱测量研究[D]. 苏州: 江苏大学, 2020. [51] 韩荦. 基于离轴积分腔输出光谱的 CO2 中13C, 18O 同位素测量技术研究[D]. 合肥: 中国科学技术大学, 2018. [52] 张志荣, 夏滑, 孙鹏帅, 等. 基于高灵敏激光吸收光谱技术的稳定气态同位素测量及其应用(特邀)[J]. 光子学报, 2023, 52(3): 127-43. [53] Yang L, Lin H, Feng X J, et al. Saturation cavity ring-down spectrometry using a dynamical relaxation model[J]. Optics Express, 2019, 27(3): 1769-1776. doi: 10.1364/OE.27.001769 [54] Giusfredi G, Bartalini S, Borri S, et al. Saturated-Absorption Cavity Ring-Down Spectroscopy[J]. Physical Review Letters, 2010, 104(11): 110801. doi: 10.1103/PhysRevLett.104.110801 [55] Burkart J, Romanini D, Kassi S. Optical feedback frequency stabilized cavity ring-down spectroscopy[J]. Optics Letters, 2014, 39(16): 4695-4698. doi: 10.1364/OL.39.004695 [56] Truong G W, Douglass K O, Maxwell S E, et al. Frequency-agile, rapid scanning spectroscopy[J]. Nature Photonics, 2013, 7(7): 532-534. doi: 10.1038/nphoton.2013.98 [57] Polyansky O L, Bielska K, Ghysels M, et al. High-accuracy CO2 line intensities determined from theory and experiment[J]. Physical Review Letters, 2015, 114(24): 243001. doi: 10.1103/PhysRevLett.114.243001 [58] Fleisher A J, Adkins E M, Reed Z D, et al. Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity[J]. Physical Review Letters, 2019, 123(4): 043001. doi: 10.1103/PhysRevLett.123.043001