Development and Application of an On-Line Micro Gas Chromatograph with Thermal Conductivity Detector for Natural Gas Energy Metering
-
摘要: 天然气能量计量用微型在线气相色谱仪长期被国外垄断,给我国天然气国际贸易带来不利影响,开展国产化替代具有重要意义。研制了微型色谱进样系统、微型热导检测器、在线发热量计算色谱工作站等多个天然气能量计量关键核心器件(部件),率先在国内开发出具有自主知识产权的高可靠天然气能量计量微型在线气相色谱仪,样机在天然气流量计量站和天然气制氢现场开展了示范应用,分析天然气中N2、CO2、C1~C6等11个组分的分析周期为2.5 min,天然气中己烷检出限为80 μmol/mol,正丁烷和异丁烷的分离度R为2.0,正丁烷定量重复性为0.30%,4小时仪器稳定性为0.07%。研发的样机通过了
6020 台时的长期稳定性测试,各项指标能够满足天然气能量计量的需求,实现了微型气相色谱仪的国产化替代,为助力国家天然气能源安全和实现“双碳”战略目标提供了测量技术支撑。Abstract: The micro gas chromatograph for natural gas energy metering has long been monopolized by foreign companies, creating disadvantages for China in international natural gas trade. Developing domestic alternatives is therefore of great significance. This study developed several key components for natural gas energy metering, including a micro chromatographic injection system, micro thermal conductivity detector (μ-TCD), and an online chromatographic workstation for energy value calculation. The research team has led the development of a highly reliable micro on-line gas chromatograph for natural gas energy metering with independent intellectual property rights in China. The experimental prototype has been successfully applied at natural gas flow metering stations and hydrogen production sites, analyzing 11 components in natural gas such as N2, CO2, and C1–C6 with an analysis cycle of 2.5 minutes. The detection limit for hexane is 80 μmol/mol, the resolution (R) between n-butane and isobutane is 2.0, the repeatability for n-butane quantification is 0.30%, and the 4-hour instrument stability test shows a deviation of 0.07%. The prototype has passed long-term stability testing of 6020 operating hours, meeting the requirements for natural gas energy metering. This domestically developed micro gas chromatograph represents a significant step toward replacing foreign models, providing crucial measurement technology support for national energy security and the achievement of China's "dual carbon" strategic goals. -
表 1 常规热导检测器气相色谱仪和微型热导气相色谱仪指标比较
Table 1. Comparison of the conventional thermal conductivity detector gas chromatograph and the micro thermal conductivity detector gas chromatograph
项目 常规热导检测器 微型热导检测器 备注 检测器体积 μL级别 nL级别 双通道体积之和 定量环体积 0.5~5mL 1~10μL / 分析时间 7~10min 1.5~3min 正己烷 进样方式 气动阀进样 微型流路进样 / 载气流量 20~40mL/min 5~10mL/min 氦气 方法检出限 10 μmol/mol 3 μmol/mol 氢气中氦气组分 重复性 5% 1.5% 20 μmol/mol氢气中氦气体标准物质 表 2 天然气保留时间重复性
Table 2. Retention time repeatability of natural gas
组分 保留时间 平均值 RSD 1 2 3 4 5 6 7 丙烷 0.492 0.493 0.493 0.493 0.492 0.492 0.492 0.492 0.056% 异丁烷 0.595 0.595 0.595 0.595 0.595 0.594 0.594 0.595 0.088% 正丁烷 0.683 0.683 0.683 0.683 0.682 0.681 0.681 0.682 0.149% 新戊烷 0.726 0.726 0.726 0.726 0.725 0.724 0.723 0.725 0.163% 异戊烷 0.994 0.995 0.995 0.995 0.994 0.994 0.991 0.994 0.150% 正戊烷 1.159 1.161 1.161 1.161 1.161 1.160 1.158 1.160 0.104% 乙烷 0.623 0.622 0.622 0.622 0.621 0.621 0.621 0.622 0.102% 甲烷 0.310 0.310 0.310 0.310 0.309 0.309 0.309 0.310 0.114% 表 3 天然气定量重复性数据
Table 3. Quantitative repeatability data of natural gas
组分 峰面积 平均值 RSD 1 2 3 4 5 6 7 丙烷 56.099 55.864 55.864 55.218 55.395 55.238 57.191 55.838 1.232% 异丁烷 65.853 64.602 64.602 63.637 63.36 63.637 64.384 64.296 1.326% 正丁烷 61.093 59.845 59.845 58.925 59.091 58.925 60.191 59.702 1.332% 新戊烷 67.565 67.228 67.228 66.314 67.293 66.314 67.43 67.053 0.774% 异戊烷 71.895 71.634 71.634 70.235 70.96 70.235 72.386 71.283 1.165% 正戊烷 69.314 69.292 69.292 67.379 68.904 67.379 69.463 68.718 1.353% 乙烷 23.922 23.107 23.107 23.332 23.463 23.332 23.268 23.362 1.19% 甲烷 167.97 167.27 167.27 167.14 169.63 162.87 167.51 167.094 1.23% 表 4 样机和实验室仪器分析天然气样品结果的比对
Table 4. Comparison of analysis results between the prototype machine and laboratory instruments
组分 含量 y,%(摩尔分数) 实验室
分析1号实验室
分析2号样机在
线分析GB/T 13610
再现性要求氮 0.663 0.632 0.668 0.07 二氧化碳 1.677 1.686 1.679 0.10 甲烷 97.342 97.396 97.359 0.30 乙烷 0.283 0.277 0.275 0.07 丙烷 0.010 0.009 0.019 0.02 表 5 仪器可靠性测试项目
Table 5. Items of the instrument reliability test
序号 测试项目 1 N2、CO2、C1~C6组分分析周期测试 2 天然气中己烷检出限测试 3 正丁烷和异丁烷的分离度测试 4 正丁烷定量重复性 5 4小时仪器稳定性 6 仪器可靠性 表 6 仪器可靠性统计考核方案参数
Table 6. Statistical assessment scheme parameters for the instrument reliability test
判决风险 鉴别比 有效考核时间 判决责任故障数r α β d=θ0/θ1 (θ1的倍数) 拒收(≥) 接收(=) 30% 30% 3.37 1.204 1 0 注:α:生产方风险;β:使用方风险;θ0:MTBF检验上限;θ1:MTBF检验下限;d:鉴别比。 -
[1] GROB R L, Barry E F. Modern practice of gas chromatography[M]. 4nd ed. New York: A John Wiley & Sons, Inc. , 2004: 1-25. [2] JAMES A T, Martin A J P. Gas-liquid Partition Chromatography: the Separation and Micro-estimation of Volatile Fatty Acids from Formic Acid to. Dodecanoic Acid[J]. Biochemical Journal, 1952, 50: 679-690. doi: 10.1042/bj0500679 [3] Smolková-Keulemansová E. A few milestones on the journey of chromatography[J]. Journal of High Resolution Chromatography, 2000, 23(7-8): 497-501. doi: 10.1002/1521-4168(20000801)23:7/8<497::AID-JHRC497>3.0.CO;2-S [4] 汪晓菁, 石瑞红, 徐立英, 等. 二维气相色谱技术分析混合碳四馏分中微量炔烃[J]. 分析仪器, 2009(4): 29-32. doi: 10.3969/j.issn.1001-232X.2009.04.007 [5] 冯学良, 汪素芳, 王晓伟, 等. 液液萃取-气相色谱质谱法检测污染场地地下水中合成麝香[J]. 分析试验室, 2022, 41(9): 1016-1020. [6] 丁立平, 王丹红, 蔡春平. 液液萃取-气相色谱法直接测定罐装茶饮料中7种痕量卤乙酸[J]. 分析试验室, 2021, 40(4): 449-453. [7] RAY N H. Gas chromatography. II. The separation and analysis of gas mixtures by chromatographic methods[J]. Journal of Applied Chemistry, 1954, 4(2): 82-85. doi: 10.1002/jctb.5010040205 [8] MARTIN A J P. 4th International Symposium on Gas Chromatography [C]. London: Butterworths, 1963. [9] SYED A, MEHDI A-K, TAYLOR L T, et al. MEMS-based semi-packed gas chromatography columns[J]. Sensors and Actuators B: Chemical, 2009, 141(1): 309-315. doi: 10.1016/j.snb.2009.06.022 [10] SUN J H, CUI D F, CHEN X, et al. Fabrication and characterization of microelectromechanical systems-based gas chromatography column with embedded micro-posts for separation of environmental carcinogens[J]. Journal of Chromatography A, 2013, 1291(10): 122-128. [11] 孙建海, 崔大付, 蔡浩原, 等. 基于微机电子系统技术高性能气相色谱柱的制备[J]. 分析化学, 2010, 38(2): 293-295. [12] ZHAO B, FENG F, TIAN B W, et al. Micro thermal conductivity detector based on SOI substrate with low detection limit[J]. Sensors and Actuators B: Chemical, 2020, 308: 127682. doi: 10.1016/j.snb.2020.127682 [13] TERRY S C, JERMAN J H, ANGELL J B. A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer[J]. IEEE Trans Electron Devices, 1979, 26(12): 1880-1886. doi: 10.1109/T-ED.1979.19791 [14] BARTLE K D, MYERS P. History of gas chromatography[J]. Trends in Analytical Chemistry, 2002, 21(9-10): 547-557. doi: 10.1016/S0165-9936(02)00806-3 [15] 李加福, 朱小平, 杜华, 等. 金属薄膜厚度测量技术分析[J]. 计量科学与技术, 2020, 64(7): 62-65,50. doi: 10.3969/j.issn.1000-0771.2020.07.17 [16] 高宜孝. 气相色谱仪检定中记录值(毫伏)和技术指标值(安培)之间的换算[J]. 计量科学与技术, 1992, 36(5): 30-32. [17] 全国天然气标准化技术委员会. 天然气发热量、密度、相对密度和沃泊指数的计算方法: GB/T 11062-2020[S]. 北京: 中国标准出版社, 2020. [18] 宋笑明, 许雪琼, 杨占旗. 氮中氢气体标准物质气相色谱分析方法的研究[J]. 计量科学与技术, 2014, 58(9): 37-40. doi: 10.3969/j.issn.1000-0771.2014.09.11 [19] 贾玲玲, 吴运逸. 我国天然气能量计量计价单位及基准值研究[J]. 计量科学与技术, 2023, 67(1): 45-49. doi: 10.12338/j.issn.2096-9015.2022.0097 [20] 成伟, 杨添波, 李长武, 等. 多气源格局下天然气计量体系国内外进展[J]. 计量科学与技术, 2024, 68(1): 3-9,75. doi: 10.12338/j.issn.2096-9015.2023.0321 [21] 叶朋, 顾志烈, 施世信. 天然气管网能量计量与管理系统的实现[J]. 计量科学与技术, 2014, 58(11): 12-14. doi: 10.3969/j.issn.1000-0771.2014.11.03 [22] 曹德祥. 基于MEMS技术的微型气相色谱仪的研制[J]. 分析仪器, 2007(3): 9-12. doi: 10.3969/j.issn.1001-232X.2007.03.003 [23] 胡君杰. 微型热导检测器晶圆级封装的设计与制作[D]. 成都: 电子科技大学, 2021. [24] 关亚风, 微型分离分析仪器与技术[M]. 北京: 科学出版社, 2021: 84-90. [25] 张敏刚, 胡君杰, 熊可, 等. 微型热导检测器的研究进展[J]. 中国测试, 2020, 46(8): 1-8. doi: 10.11857/j.issn.1674-5124.2019120029 [26] 曾文平, 周理, 胡仲可, 等. 国产在线气相色谱仪分析天然气组成的适应性研究[J]. 石油与天然气化工, 2023, 52(2): 116-122. doi: 10.3969/j.issn.1007-3426.2023.02.019 [27] 孙丽敏, 陈国涛, 贾晓迪. 双色谱柱分析模块型在线气相色谱仪校准方法探讨[J]. 计量科学与技术, 2014, 58(11): 54-57. doi: 10.3969/j.issn.1000-0771.2014.11.18 [28] 全国天然气标准化技术委员会. 天然气在线气相色谱仪性能评价: SY/T 7658-2021[S]. 北京: 石油工业出版社, 2021. [29] 全国物理化学计量技术委员会. 在线气相色谱仪: JJG 1055-2009[S]. 北京: 中国计量出版社, 2009. [30] 中国人民解放军总装备部. 可靠性鉴定和验收试验: GJB 899A-2009[S]. 北京: 总装备部军标出版发行部, 2009. [31] 全国气体标准化技术委员会. 气体分析微型热导气相色谱法: GB/T 43362-2023[S]. 北京: 中国标准出版社, 2023.