Research Tatus of CO2 Detection Methods
-
摘要: CO2是一种重要的温室气体,它对地球环境和人类健康等多方面造成危害。随着工业化、城市化和能源消耗的增加,大气中CO2等温室气体的排放量持续增加,引发了人类对全球气候变化的担忧。因此,对CO2浓度进行检测变得至关重要。目前,碳排放计算方法主要有检测法与核算法两类。与核算法相比,检测法具有精度高、能够实时监测的优点,且更利于指导机组低碳改造和运行。主要介绍了现有的CO2主要检测方法,包括化学分析法和物理光学分析法两类。化学分析法主要有电位滴定法、化学吸收法、气敏传感技术、气相色谱法和质谱法等;物理光学分析法有光腔衰荡光谱法、离轴积分腔吸收光谱法、非分散红外吸收光谱法、傅里叶变换红外光谱分析、可调谐半导体激光吸收光谱法等。传统化学分析法更适合复杂组分的精确检测,但通常不适合用于长周期在线检测。随着计算机技术和光学检测技术的快速发展,新兴的物理光学检测技术逐渐发挥出更大的优势。通过对检测方法的总结与分析,有助于研究人员选择合适的CO2检测方法和为相关行业提供数据支持,有助于开发高灵敏度、高精度的碳计量与检测设备,助力双碳政策实施和环境空气质量控制。Abstract: CO2 is an important greenhouse gas that poses multifaceted hazards to the Earth's environment and human health. With the increase in industrialization, urbanization, and energy consumption, the emission of greenhouse gases such as CO2 in the atmosphere has continued to increase, raising concerns about global climate change. Therefore, the detection of CO2 concentration has become crucial. Currently, there are two main types of carbon emission measurement methods: testing methods and accounting methods. Testing methods have the advantages of high precision and real-time monitoring, making them more conducive to guiding the low-carbon transformation and operation of the unit compared to accounting methods. This paper mainly introduces the existing primary detection methods for CO2, which include chemical analysis methods and physical optical analysis methods. Chemical analysis methods mainly include potentiometric titration, chemical absorption, gas-sensitive sensing technology, gas chromatography, and mass spectrometry. Physical optical analysis methods include cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS), non-dispersive infrared (NDIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and tunable diode laser absorption spectroscopy (TDLAS). Traditional chemical analysis is more suitable for accurate detection of complex components but is usually not suitable for long-period online detection. With the rapid development of computer technology and optical detection technology, emerging physical optical detection technologies gradually play a greater advantage. This paper summarizes and analyzes various detection methods that can help researchers select suitable CO2 detection methods and provide data support for related industries. It can also help develop high-sensitivity and high-precision CO2 metrology and detection equipment, which can aid in implementing the dual-carbon policy and controlling ambient air quality.
-
Key words:
- metrology /
- CO2 /
- carbon emission /
- detection /
- chemical analysis /
- physical optical analysis /
- carbon metrology
-
表 1 CO2检测方法比较
Table 1. Comparison of CO2 detection methods
方法名称 使用场景 测量范围/ppm 误差 成本 响应时间/s 化学分析法 电位滴定法[8] 实验室 30-180 5-10% 低 >3600 气敏传感器技术[14 − 18] 现场 150-1500 ±2%FS 较低 ≤75 气相色谱[19] 实验室 380-480 5% 较高 138 质谱法[22,27] 实验室 ≥20 3-5% 较高 0.1 物理光学分析法 傅里叶变化光谱技术[31 − 32] 实验室 ≥4 ≤2% 高 0.1 非分散红外吸收光谱[34 − 36] 现场 ≥2.4 ≤3.5% 较高 ≤13 离轴积分腔吸收光谱技术[43 − 45] 实验室 ≥0.1 ≤1% 高 0.8 光腔衰荡光谱技术[48 − 49] 实验室 ≥0.1 ≤1% 高 10 可调谐半导体激光吸收光谱法[53 − 54] 实验室 ≥0.52 ≤2% 适中 1.6 -
[1] 凌定元. 温室效应危害及治理措施[J]. 纳税, 2018(13): 252. [2] WANG S, SHI C, FANG C, et al. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model[J]. Applied Energy, 2019, 235: 95-105. doi: 10.1016/j.apenergy.2018.10.083 [3] 郁丹, 唐人, 王艾荣. 国内固定排放源二氧化碳排放连续监测应用现状和问题初探[J]. 暖通空调, 2024, 54(2): 28-32. [4] 张芮, 陈伟, 张紫禾, 等. 二氧化碳排放检测技术应用与拓展浅析[J]. 资源节约与环保, 2018(3): 99-101. [5] 饶雨舟, 李越胜, 姚顺春, 等. 碳排放在线检测技术的研究进展[J]. 广东电力, 2015, 28(8): 1-8. [6] 颜世平. CO2浓度实时检测方法及其实现研究[D]. 长沙: 湖南大学, 2013. [7] 张宁, 张紫禾, 康磊, 等. 固定排放源CO2排放检测方法综述[J]. 中国环境管理干部学院学报, 2016, 26(6): 60-62,85. [8] MOHAMMADIAN E, HAMID H, ASADULLAH M, et al. Measurement of CO2 solubility in NaCl brine solutions at different temperatures and pressures using the potentiometric titration method[J]. Journal of Chemical & Engineering Data, 2015, 60(7): 2042-2049. [9] WIEGRAN K, TRAPP T, CAMMANN K. Development of a dissolved carbon dioxide sensor based on a coulometric titration[J]. Sensors and Actuators B:Chemical, 1999, 57(1): 120-124. [10] XU C G, YU Y S, XIE W J, et al. Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption[J]. Applied Energy, 2019, 255: 113791. doi: 10.1016/j.apenergy.2019.113791 [11] 杨俊超, 潘勇, 秦墨林, 等. 金属氧化物半导体气敏传感器研究进展[J]. 化学传感器, 2022, 42(2): 10-18. doi: 10.3969/j.issn.1008-2298.2022.02.002 [12] ZHANG C, XU K, LIU K, et al. Metal oxide resistive sensors for carbon dioxide detection[J]. Coordination Chemistry Reviews, 2022, 472: 214758. doi: 10.1016/j.ccr.2022.214758 [13] 徐春霞, 王光伟, 张鹏. 半导体电阻型CO2传感器研究进展[J]. 传感器与微系统, 2023, 42(10): 1-4. [14] KANAPARTHI S, SINGH S G. Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection[J]. ACS Applied Nano Materials, 2019, 2(2): 700-706. doi: 10.1021/acsanm.8b01763 [15] MIAO F, WU H, TAO B, et al. A passive-chipless LC carbon dioxide sensor with non-contact ZnO/CuO/RGO nanocomposites at room temperature[J]. Vacuum, 2023, 215: 112261. doi: 10.1016/j.vacuum.2023.112261 [16] KEERTHANA S, RATHNAKANNAN K. Room temperature operated carbon dioxide sensor based on silver doped zinc oxide/cupric oxide nanoflowers[J]. Sensors and Actuators B:Chemical, 2023, 378: 133-181. [17] KEERTHANA S, RATHNAKANNAN K. Hierarchical ZnO/CuO nanostructures for room temperature detection of carbon dioxide[J]. Journal of Alloys and Compounds, 2022, 897: 162988. doi: 10.1016/j.jallcom.2021.162988 [18] HUNGE Y M, YADAV A A, KULKARNI S B, et al. A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications[J]. Sensors and Actuators B:Chemical, 2018, 274: 1-9. [19] 中国气象科学研究院. 气相色谱法本底大气CO2和甲烷浓度在线观测方法: GB/T 31705-2015 [S]. 北京: 中国标准出版社, 2015. [20] 王鹏. 地震孕育区CH4和CO2原位检测技术研究[D]. 长春: 吉林大学, 2023. [21] BAHAGHIGHAT H D, FREYE C E, SYNOVEC R E. Recent advances in modulator technology for comprehensive two dimensional gas chromatography[J]. TRAC Trends in Analytical Chemistry, 2019, 113: 379-391. doi: 10.1016/j.trac.2018.04.016 [22] EKEBERG D, OGNER G, FONGEN M, et al. Determination of CH4, CO2 and N2O in air samples and soil atmosphere by gas chromatography mass spectrometry, GC-MS[J]. Journal of Environmental Monitoring, 2004, 6(7): 621-623. doi: 10.1039/B401315H [23] SECHMAN H, KOTARBA M J, KĘDZIOR S, et al. Distribution of methane and carbon dioxide concentrations in the near-surface zone over regional fault zones and their genetic characterization in the Pszczyna-Oświęcim area (SE part of the Upper Silesian Coal Basin, Poland)[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106804. doi: 10.1016/j.petrol.2019.106804 [24] 洪海祥, 臧昆鹏, 陈圆圆等. 三通道气相色谱法监测大气中CH4、CO、CO2、N2O和SF6[J]. 色谱, 2022, 40(8): 763-771. [25] 金伟. ESI-RIT质谱仪和智能VOC_s检测仪中关键部件的研制[D]. 长春: 吉林大学, 2007. [26] 国家市场监督管理总局等. 质谱分析方法通则: GB/T 6041-2020 [S]. 北京: 中国标准出版社, 2020: 03-31. [27] 张体强, 胡树国, 吴海, 等. 电子级氮气中超痕量杂质的质谱分析方法及测量不确定度评估[J]. 质谱学报, 2017, 38(5): 574-583. [28] LIU W, ZHOU L, YUAN W, et al. Tracking indoor volatile organic compounds with online mass spectrometry[J]. TRAC Trends in Analytical Chemistry, 2024, 171: 117514. doi: 10.1016/j.trac.2023.117514 [29] 周枫然, 韩桥, 张体强, 等. 傅里叶变换红外光谱技术的应用及进展[J]. 化学试剂, 2021, 43(8): 1001-1009. [30] 单昌功. 基于地基高分辨率傅里叶变换红外光谱技术研究大气CO2时空分布和变化特征[D]. 合肥: 中国科学技术大学, 2019. [31] 中国计量科学研究院. 傅立叶变换红外光谱仪校准规范JJF 1319-2011 [S]. 北京: 中国标准出版社, 2011. [32] 单昌功, 王薇, 刘诚, 等. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值[J]. 物理学报, 2017, 66(22): 149-157. [33] 李相贤, 徐亮, 高闽光, 等. 分析温室气体及CO2碳同位素比值的傅里叶变换红外光谱仪[J]. 光学精密工程, 2014, 22(9): 2359-2368. [34] 中国环境监测总站. 固定污染源废气 CO2的测定非分散红外吸收法[EB/OL]. [2024-02-26].https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201712/W020171207498942245327.pdf. [35] 逯又豪, 杨帆, 张溪, 等. 基于传感器的CO2检测仪在水库CO2通量检测中的应用[J]. 环境工程, 2023, 41(10): 45-50,68. [36] XU M, PENG B, ZHU X, et al. Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology[J]. Sensors, 2022, 22(3): 836. doi: 10.3390/s22030836 [37] TIAN F chao, LIANG Y TAO, ZHU H qing, et al Application of a novel detection approach based on non-dispersive infrared theory to the in-situ analysis on indicator gases from underground coal fire[J]. Journal of Central South University, 2022, 29(6): 1840-1855. [38] XU M, XU Y, TAO J, et al. Development of a compact NDIR CO2 gas sensor for harsh environments[J]. Infrared Physics & Technology, 2024, 136: 105035. [39] KOSSE P, KLEEBERG T, LÜBKEN M, et al. Quantifying direct carbon dioxide emissions from wastewater treatment units by nondispersive infrared sensor (NDIR)-A pilot study[J]. Science of The Total Environment, 2018, 633: 140-144. doi: 10.1016/j.scitotenv.2018.03.174 [40] ROLLE F, SEGA M. Carbon dioxide determination in atmosphere by non-dispersive infrared spectroscopy: A possible approach towards the comparability with seawater CO2 measurement results[J]. Measurement, 2018, 128: 479-484. doi: 10.1016/j.measurement.2018.07.007 [41] SUN Q, LIU T, HUANG M. High accuracy wide range CO2 detection method based on difference optical path NDIR[J]. Sensors and Actuators A:Physical, 2023, 363: 114722. doi: 10.1016/j.sna.2023.114722 [42] TAN Q, TANG L, YANG M, et al. Three-gas detection system with IR optical sensor based on NDIR technology[J]. Optics and Lasers in Engineering, 2015, 74: 103-108. [43] 中华人民共和国国家质量监督检验检疫总局等. 温室气体 二氧化碳测量 离轴积分腔输出光谱法: GB/T34286-2017[S]. 北京: 中国标准出版社, 2017: 09-07. [44] B. P. JOSUA , L. LARRY, G. A. JAMES. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Applied Optics, 2001, 40(27): 4904-4910. [45] ZHENG K, ZHENG C, ZHANG H, et al. Near-Infrared Off-Axis Integrated Cavity Output Spectroscopic Gas Sensor for Real-Time, In Situ Atmospheric Methane Monitoring[J]. IEEE Sensors Journal, 2021, 21(5): 6830-6838. doi: 10.1109/JSEN.2020.3042697 [46] 王坤阳. 基于离轴积分腔光谱大气CO2和CH4高精度测量技术研究[D]. 合肥: 中国科学技术大学, 2021. [47] LAI R, HE C, LI X, et al. Trace methane gas detection by wavelength modulated off-axis integrated cavity output spectroscopy[J]. Journal of Modern Optics, 2019, 66(6): 581-589. doi: 10.1080/09500340.2018.1557752 [48] 中华人民共和国国家质量监督检验检疫总局等. 大气二氧化碳(CO2)光腔衰荡光谱观测系统: GB/T34415-2017 [S]. 北京: 中国标准出版社, 2017: 09-29. [49] 宋绍漫, 颜昌翔. 基于光腔衰荡光谱技术的痕量甲烷检测[J]. 光谱学与光谱分析, 2020, 40(07): 2023-2028. [50] FILGES A, GERBIG C, CHEN H, et al. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO[J]. Tellus B:Chemical and Physical Meteorology, 2015, 67(1): 27989. doi: 10.3402/tellusb.v67.27989 [51] BRANDILY C, LECUFF N, DONVAL J P, et al. A GC-SSIM-CRDS system: Coupling a gas chromatograph with a Cavity Ring-Down Spectrometer for onboard Twofold analysis of molecular and isotopic compositions of natural gases during ocean-going research expeditions[J]. Analytica Chimica Acta, 2021, 1184: 339040. doi: 10.1016/j.aca.2021.339040 [52] 孙超越. 基于TDLAS技术的CO2浓度表征方法研究[D]. 西安: 西安理工大学, 2022. [53] XIN F, LI J, GUO J, et al. Measurement of Atmospheric CO2 Column Concentrations Based on Open-Path TDLAS[J]. Sensors (Basel, Switzerland), 2021, 21(5): 1722. doi: 10.3390/s21051722 [54] 刘海芹, 徐睿, 王振翔, 等. 基于TDLAS的近红外甲烷高灵敏检测技术[J]. 光子学报, 2024, 53(3): 250-257.