留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由空间单站反射系数测量中校准方法的比较

杨若楠 梁伟军 徐浩

杨若楠,梁伟军,徐浩. 自由空间单站反射系数测量中校准方法的比较[J]. 计量科学与技术,2024, 68(8): 25-31 doi: 10.12338/j.issn.2096-9015.2024.0080
引用本文: 杨若楠,梁伟军,徐浩. 自由空间单站反射系数测量中校准方法的比较[J]. 计量科学与技术,2024, 68(8): 25-31 doi: 10.12338/j.issn.2096-9015.2024.0080
YANG Ruonan, LIANG Weijun, XU Hao. Comparison of Calibration Methods in Free-Space Monostatic Reflection Coefficient Measurement[J]. Metrology Science and Technology, 2024, 68(8): 25-31. doi: 10.12338/j.issn.2096-9015.2024.0080
Citation: YANG Ruonan, LIANG Weijun, XU Hao. Comparison of Calibration Methods in Free-Space Monostatic Reflection Coefficient Measurement[J]. Metrology Science and Technology, 2024, 68(8): 25-31. doi: 10.12338/j.issn.2096-9015.2024.0080

自由空间单站反射系数测量中校准方法的比较

doi: 10.12338/j.issn.2096-9015.2024.0080
基金项目: 国家重点研发计划(2022YFF0605901)。
详细信息
    作者简介:

    杨若楠(2001-),中国计量科学研究院在读研究生,研究方向:微波测量技术与计量,邮箱:yangrn@nim.ac.cn

    通讯作者:

    梁伟军(1978-),中国计量科学研究院副研究员,研究方向:无线电导波基本参数计量与测试技术,邮箱:liangwj@nim.ac.cn

  • 中图分类号: TB973

Comparison of Calibration Methods in Free-Space Monostatic Reflection Coefficient Measurement

  • 摘要: 微波黑体为微波辐射计提供高精度的亮温信号以精确标定观测目标的辐射信号幅度。微波黑体的发射率是影响其辐射特性的重要参数,因此准确测量黑体发射率对于提高辐射计的定标精度和保证量值的溯源性和有效传递具有重要意义,目前黑体发射率主要通过测量反射率来间接计算得到。本文实现了自由空间单站反射系数测量中的两种校准方法:偏移短路校准法和滑动负载校准法,采用时域门技术解决了小反射测量过程中多径反射信号的影响。搭建了反射率测量系统,在75~110 GHz频段内测量了同一黑体目标的反射率,并对测量结果进行了分析和比较。两种校准方法解算的误差项具有很好的一致性,测量发射率均能到达0.999~0.9999量级。当被测黑体满足近似条件时,使用滑动负载校准法具有更高的效率。最后,以偏移短路法为例,采用蒙特卡洛方法对微波黑体反射系数的测量不确定度进行了评定。
  • 图  1  辐射计两点定标原理

    Figure  1.  Two-point calibration principle of radiometers

    图  2  反射率测量系统示意图

    Figure  2.  Schematic diagram of reflectivity measurement system

    图  3  自由空间单端口反射系数测量信号流图

    Figure  3.  Signal-flow graph for free-space monostatic reflection coefficient measurement

    图  4  半参数圆拟合法拟合$ {\mathit{\varGamma }}_{\mathbf{m}\mathbf{e}\mathbf{a}\mathbf{s}} $

    Figure  4.  Semi-parametric circular fitting method for $ {\mathit{\varGamma }}_{\mathbf{m}\mathbf{e}\mathbf{a}\mathbf{s}} $

    图  5  自由空间单站反射系数测量系统示意图

    Figure  5.  Schematic diagram of free-space monostatic reflection coefficient measurement system

    图  6  滑动负载校准法中任意两个频点半参数圆拟合示例

    Figure  6.  Example of semi-parametric circular fitting for any two frequency points in sliding-load calibration method

    图  7  两种校准方法解算的误差项对比

    注:蓝色曲线为测量结果,橘色曲线为差值。

    Figure  7.  Comparison of error terms calculated using two calibration methods

    图  8  黑体目标两种自由空间单端口反射系数测量结果对比

    注:蓝色曲线为测量结果,橘色曲线为差值。

    Figure  8.  Comparison of free-space one-port reflection coefficient measurement results for the blackbody target

    图  9  偏移短路校准法75.656 GHz反射系数实部单批次MCM概率分布

    Figure  9.  Single-batch MCM probability distribution of the reflection coefficient real part at 75.656 GHz using the offset-short calibration method

    表  1  两种校准方法在不同测量设置下所需时间对比

    Table  1.   Comparison of time required for the two calibration methods under different measurement settings

    校准
    方法
    频点数校准件移动次数
    (负载/金属板)
    程序解算
    时间(秒)
    滑动负载
    校准法
    70140.011754
    160140.036484
    50.036092
    80.030351
    250040.059153
    偏移短路
    校准法
    701493.747827
    16014319.017061
    5334.650704
    8355.390375
    25004447.168423
    下载: 导出CSV

    表  2  反射系数输入量

    Table  2.   Reflection coefficient input quantities

    输入量 测量值
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}} $ 0.0012 − 0.0060i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}} $ 0.0470 − 0.0773i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(1\right)} $ 0.0802 − 0.0350i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(2\right)} $ 0.0830 + 0.0164i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(3\right)} $ 0.0536 + 0.0605i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(5\right)} $ 0.0045 + 0.0780i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(6\right)} $ 0.04580 + 0.0641i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(7\right)} $ 0.0778 + 0.0210i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(8\right)} $ 0.0781 − 0.0318i
    $ {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}} $ 0.0019 − 0.0055i
    下载: 导出CSV

    表  3  测量模型各输入量幅值最大变化值

    Table  3.   The maximum change value of each input of the measurement model

    输入量 均值($ \times {10}^{-5} $)
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}}\right| $ 6.4944
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}}\right| $ 17.7564
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(1\right)}\right| $ 7.9616
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(2\right)}\right| $ 17.3536
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(3\right)}\right| $ 17.6757
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(4\right)}\right| $ 18.4665
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(5\right)}\right| $ 7.0139
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(6\right)}\right| $ 3.2370
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(7\right)}\right| $ 18.5265
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}^{\mathrm{o}\mathrm{f}\mathrm{f}\left(8\right)}\right| $ 17.7068
    $ \left|\Delta {\varGamma }_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}\right| $ 7.1719
    下载: 导出CSV
  • [1] Cho K, Naoki K, Nakayama M, et al. The Relationship Between Microwave Brightness Temperature, Salinity, and Thickness of Sea Ice Acquired With a Tank Experiment[J]. ITGRS, 2024, 62: 1-9.
    [2] Ulaby FT, Long DG. Microwave Radar and Radiometric Remote Sensing[M]. Michigan: The University of Michigan Press, 2014.
    [3] 关越, 高福生. 黑体辐射源发射率对测量误差的影响[J]. 轻工标准与质量, 2018(1): 82-83,7.
    [4] 年丰, 于杰, 陈云梅, 等. 中国星载微波辐射计地面定标技术的研究进展[J]. 宇航计测技术, 2007(S1): 27-33.
    [5] 李彬. 一种新型全极化微波辐射计定标源研制及定标方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2017.
    [6] Khatib O, Gu D, Smith J, et al. Planar Metamaterial Absorbers for Calibration of Microwave Radiometers for Atmospheric Remote Sensing[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022.
    [7] ISO. Space systems-- Calibration requirements for satellite-based passive microwave sensors: ISO 20930: 2018[S]. Geneva: ISO, 2018.
    [8] A. Murk AD. ALMA Calibration Device Prototype Calibration Load Test Report. [R]. Institute of Applied Physics, University of Bern, 2007.
    [9] A. Murk, A. Duric, Patt F. Characterization of ALMA Calibration Targets[C]. 19th International Symposium on Space Terahertz Technology.
    [10] Hein WHCBASM. Challenges of RF Absorber Characterization: Comparison Between RCS- and NRL-Arch-Methods[C]. 2019 International Symposium on Electromagnetic Compatibility (EMC Europe ), 2019.
    [11] Hofmann W, Schwind A, Bornkessel C, et al. Bi-static reflectivity measurements of microwave absorbers between 2 and 18 GHz[C]. 2021 Antenna Measurement Techniques Association Symposium (AMTA), 2021.
    [12] 李彬, 金铭, 白明, 等. 微波黑体发射率计量标准装置的准光照射天线设计[J]. 宇航计测技术, 2018, 38(6): 7. doi: 10.12060/j.issn.1000-7202.2018.06.02
    [13] Jin M, Li B, Bai M. On the Reflectivity Measurements of Microwave Blackbody in Bistatic Near-Field Configuration[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 8027-8032. doi: 10.1109/TAP.2021.3083762
    [14] Jin M, Li B, Bai M. Development of the Standard Facility for the Microwave Blackbody Emissivity Determination in China[C]. 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2021.
    [15] Dazhen G, Houtz D, Randa J, et al. Reflectivity Study of Microwave Blackbody Target[J]. ITGRS, 2011, 49(9): 3443-3451.
    [16] Houtz DA, Gu D. A Measurement Technique for Infrared Emissivity of Epoxy-Based Microwave Absorbing Materials[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 48-52. doi: 10.1109/LGRS.2017.2772783
    [17] Cheng CY, Li F, Yang YJ, et al. Emissivity measurement study on wide aperture microwave radiator[C]. 2008 International Conference on Microwave and Millimeter Wave Technology, 2008.
    [18] Cheng J, Cao Y, Zhai H, et al. Development of New Calibration Targets for FY-3 Satellites Microwave Radiometer[C]. 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2021.
    [19] Wang T, Zeng J, Chen K-S, et al. Comparison of Different Intercalibration Methods of Brightness Temperatures From FY-3D and AMSR2[J]. ITGRS, 2022, 60: 12-17.
    [20] 程春悦, 何巍. 140GHz~220GHz微波黑体发射率测量研究[C]. 2011年全国微波毫米波会议, 2011.
    [21] Wang J, Miao J, Yang Y, et al. Scattering Property and Emissivity of a Periodic Pyramid Array Covered With Absorbing Material[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2656-2663. doi: 10.1109/TAP.2008.927570
    [22] 金铭. 锥形阵列微波辐射计定标源的电磁波散射和发射率研究 [D]. 北京: 北京航空航天大学, 2012.
    [23] Junhong W, Yujie Y, Jungang M, et al. Emissivity Calculation for a Finite Circular Array of Pyramidal Absorbers Based on Kirchhoff's Law of Thermal Radiation[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1173-1180. doi: 10.1109/TAP.2010.2041148
    [24] Jin M, Fan B, Li X, et al. On the Total Reflectivity Estimation of Microwave Calibration Targets by Backscattering Measurements[J]. ITGRS, 2022, 60: 1-11.
    [25] Houtz DA. NIST MICROWAVE BLACKBODY: The design, testing, and verification of a conical brightness temperature source [D]. Boulder : University of Colorado Boulder, 2017.
    [26] andersteen GV. It is possible to improve the Sliding Load Calibration Procedure using a Semi-Parametric Circle Fitting Algorithm [D]. Brussel : Vrije Universiteit Brussel, 1997.
    [27] Yang R, Liang W, Xu H. Design and Fabrication of WR-28 Blackbody Target[C]. 2023 16th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 2023.
    [28] 倪育才. 实用测量不确定度评定[M]. 北京: 中国质量标准出版传媒有限公司, 2020.
    [29] Dirix M, Enayati A. On the Uncertainty Evaluation of Absorber Reflectivity Measurements[C]. 2023 Antenna Measurement Techniques Association Symposium (AMTA), 2023.
    [30] Doug Rytting. Network analyzer error models and calibration methods [R]. 1998.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  35
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 录用日期:  2024-03-13
  • 修回日期:  2024-03-18
  • 网络出版日期:  2024-05-30

目录

    /

    返回文章
    返回