Low-Frequency Electric Field Standard Device Based on Parallel Plates
-
摘要: 由于各厂家生产的探头参差不齐,不同探头的性能也不尽相同,电场标准装置的研制就显得尤为重要。为了满足低频高场强电场探头的校准要求,采用平行板法研制了一套低频电场标准装置。装置由两块边长1 m,板间距0.5 m的方形铝板组成。频率范围为DC~10 kHz,电场强度范围为0~3000 V/m。通过理论分析、软件仿真和测量实验,研究了边缘效应、极板材料、结构形状、工作频率等因素对平行板产生标准电场的影响,并进行了不确定度评定。提出了新的测量模型,并对极板电压、极板间距、平行板内场均匀性、探头夹具、探头对准、平行板有限尺寸和探头影响七个因素导致的不确定度分量分别进行了评定,得到扩展不确定度为U=6.8%(k=2)。结果表明,研制的电场标准装置能够满足低频电场探头的校准要求。Abstract: Due to the varying quality of probes produced by different manufacturers, the development of electric field standard devices has become particularly important. To meet the calibration requirements of low-frequency, high-field-strength electric field probes, a low-frequency electric field standard device was developed using the parallel plate method. The device consists of two square aluminum plates with a side length of 1 m and a plate spacing of 0.5 m. The frequency range is DC to 10 kHz, with an electric field strength range of 0 to 3000 V/m. Through theoretical analysis, software simulation, and experimental measurements, the effects of edge effects, plate material, structure shape, operating frequency, and other factors on the standard electric field generated by parallel plates were studied, and an uncertainty evaluation was conducted. A new measurement model was proposed, and uncertainty components caused by seven factors were evaluated separately: plate voltage, plate spacing, field uniformity within the parallel plates, probe fixture, probe alignment, finite size of parallel plates, and probe influence. The resulting expanded uncertainty is U=6.8% (k=2). The results show that the developed electric field standard device can meet the calibration requirements for low-frequency electric field probes.
-
表 1 EHP-50F探头实验测量结果
Table 1. Experimental measurement results for EHP-50F probe
频率Hz 理论场值V/m 测量结果V/m 校准因子 50 80 80.33 1.00 50 200 200.8 1.00 50 3000 2994 1.00 100 80 80.39 1.00 500 80 79.01 1.01 1000 80 79.32 1.01 2000 80 79.28 1.01 5000 80 79.16 1.01 10000 80 79.29 1.01 表 2 低频场强标准装置的不确定度分量汇总表
Table 2. Summary of uncertainty components for the low-frequency electric field strength standard device
不确定度来源 值 分布 包含因子 灵敏系数 相对不确定度分量 电压表示值 0.00090 正态 2 1 0.0450 %极板间距 0.0070 正态 2 -1 0.350% 场分布的不均匀性 0.027 均匀 $ \sqrt{3} $ 1 1.58% 探头夹具 0.025 均匀 $ \sqrt{3} $ 1 1.43% 探头对准 0.025 均匀 $ \sqrt{3} $ 1 1.45% 极板有限尺寸 0.00070 均匀 $ \sqrt{3} $ 1 0.0400 %探头引入 0.038 均匀 $ \sqrt{3} $ 1 2.22% 相对合成标准不确定度 3.42% -
[1] 黎国栋, 吴佳欢, 桑昱. 半自动极低频场强仪校准装置[J]. 电子测量与仪器学报, 2004, 18: 494-504. [2] 何梓斌, 邢昊, 蒋延勇, 等. 超大型低反射镜面单锥脉冲电场标准装置[J]. 电子测量与仪器学报, 2023, 37(5): 117-126. [3] 邢昊, 何梓滨, 吴梦娟, 等. 电场场强校准技术的研究进展[J]. 计量科学与技术, 2023, 67(3): 20-28,42. doi: 10.12338/j.issn.2096-9015.2023.0035 [4] 刘顺亮. 校准测量中均匀电场的产生方法研究[D]. 西安: 西安电子科技大学, 2017. [5] 万思嘉, 钱承, 周镒, 等. 电场探头校准及系统实现[J]. 安全与电磁兼容, 2021(6): 65-68. doi: 10.3969/j.issn.1005-9776.2021.06.011 [6] 左建生. 工频电场测量仪的校准装置[J]. 上海计量测试, 2020, 278: 39-41. doi: 10.3969/j.issn.1673-2235.2020.01.016 [7] 王世明. 高频截止特性测量中的边缘效应[J]. 计量学报, 1983, 4(2): 146-151. [8] 杨盛祥, 席德熊, 吴钒, 等. 高频电场标准装置的研制[J]. 计量学报, 1998, 19(2): 101-105. doi: 10.3321/j.issn:1000-1158.1998.02.004 [9] 李欣, 张雪芹, 曹保锋, 等. 电磁脉冲电场探头校准装置及不确定度评定[J]. 核电子学与探测技术, 2014, 34(8): 1007-1010. doi: 10.3969/j.issn.0258-0934.2014.08.021 [10] 刘潇, 李渤, 谢鸣. 基于TEM小室的探头校准系统不确定度评定[J]. 计量学报, 2015, 36(3): 318-323. doi: 10.3969/j.issn.1000-1158.2015.03.20 [11] 李丹. 20Hz-100MHz电场探头校准系统的研究[D]. 北京: 北京交通大学, 2016. [12] Lorenzo Carbonini. Comparison of Analysis of a WTEM Cell with Standard TEM Cells for Generating EM Fields[J]. IEEE Transactions on Electromagnetic Compatibility, 1993, 35(2): 255-263. doi: 10.1109/15.229429 [13] 孟天旭. GTEM小室的优化设计[D]. 北京: 北京交通大学, 2020. [14] 温舒桦. IC辐射发射测试的TEM小室设计及数值分析[D]. 厦门: 集美大学, 2013. [15] 汪玉龙. 面向元器件的多参数可调强电磁脉冲实验系统研制表征及应用[D]. 马鞍山: 安徽工业大学, 2020. [16] 袁钟柱, 万发雨. 宽带横电磁波小室设计与测试应用[J]. 南京信息工程大学学报, 2021, 13(4): 437-443. [17] 袁钟柱. 宽带横电磁波小室设计与应用[D]. 南京: 南京信息工程大学, 2020. [18] 王皓琰, 李俊娜, 龚渝涵, 等. 基于开放式TEM小室的电场探头校准及改进方法[J]. 强激光与粒子束, 2022, 34(9): 9-14. [19] 顾钊源, 李月华, 杜宏宇, 等. 基于横电磁波小室的IC辐射发射测试方法研究[J]. 微波学报, 2023, 39(6): 7-11. [20] 李建轩, 赵治华, 周忠元. 基于TEM小室的宽频高场强校准系统设计[J]. 海军工程大学学报, 2018, 30(6): 17-22 doi: 10.7495/j.issn.1009-3486.2018.06.004 [21] 张骏驰. 磁场探头校准系统的研究[D]. 北京: 北京邮电大学, 2008. [22] Tadasu Takuma, Tadashi Kawamoto, Yoshitaka Sunaga. Analysis of calibration arrangements for AC field strength meters[J]. IEEE Transactions on Power Annaratus and Systems, 1985, PAS-04(3): 489-496. [23] FRANK M. GREENE. NBS field-strength standards and Measurements (30Hz to 1000MHz)[J]. Proceedings of the IEEE, 1967, 55(6): 970-981. doi: 10.1109/PROC.1967.5711 [24] M. Misakian, P. M. Fulcomer. Measurement of nonuniform power frequency electric fields[J]. IEEE Transactions on Electrical Insulation, 1983, EI-18(6): 657-661. [25] C. H. Shim, J. DI Placido, B. J. Ware. Analysis of parallel plate simulation of the transmission line electric field as related to biological effects laboratory studies[J]. IEEE Transactions on Power Apparatus and System, 1977, PAS-96(3): 962-968. [26] Oriano Bottauscio, Gabriella Crotti, Saverio D’Emilio, et al. Generation of Reference Electric and Magnetic Fields for Calibration of Power-Frequency Field Meters[J]. IEEE Transations on Instrumentation and Measurement, 1993, 42(2): 547-552. doi: 10.1109/19.278623 [27] Clovis Lasta Fritzen, Widinei Alves Fernandes, Airton Carlos Notari, et al. Electric Field Sensor Calibration Using Horizontal Parallel Plates[C]. International Symposium on Lightning Protection (XV SIPDA), 2019. [28] 谷长寿. 平行板电容器边缘效应的研究[J]. 辽宁工学院学报, 1994, 14(3): 80-82. [29] 高和之. 交变频率对平板电容器内部电磁场分布的影响[J]. 黄冈师专学报, 1990, 10(3): 54-57. [30] Yu-Sang, Chaochan Chen, Deling Zeng. Development and Uncertainty Evaluation of Calibration Testers for Low Frequency Field Strength[C]. International Conference on Microwave and Millimeter Wave Technology, 2018.