留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于回音壁微腔的窄线宽激光研究进展

辛云飞 王瑾 张诚 李代富 叶子涵 潘奕捷

辛云飞,王瑾,张诚,等. 基于回音壁微腔的窄线宽激光研究进展[J]. 计量科学与技术,2024, 68(5): 83-91 doi: 10.12338/j.issn.2096-9015.2024.0092
引用本文: 辛云飞,王瑾,张诚,等. 基于回音壁微腔的窄线宽激光研究进展[J]. 计量科学与技术,2024, 68(5): 83-91 doi: 10.12338/j.issn.2096-9015.2024.0092
XIN Yunfei, WANG Jin, ZHANG Cheng, LI Daifu, YE Zihan, PAN Yijie. Research Progress on Narrow Linewidth Lasers Based on Whispering Gallery Mode Microcavity[J]. Metrology Science and Technology, 2024, 68(5): 83-91. doi: 10.12338/j.issn.2096-9015.2024.0092
Citation: XIN Yunfei, WANG Jin, ZHANG Cheng, LI Daifu, YE Zihan, PAN Yijie. Research Progress on Narrow Linewidth Lasers Based on Whispering Gallery Mode Microcavity[J]. Metrology Science and Technology, 2024, 68(5): 83-91. doi: 10.12338/j.issn.2096-9015.2024.0092

基于回音壁微腔的窄线宽激光研究进展

doi: 10.12338/j.issn.2096-9015.2024.0092
基金项目: 国家重点研发计划项目(2022YFF0608304);国家自然科学基金(62075206,62205324)。
详细信息
    作者简介:

    辛云飞(2000-),中国计量科学研究院在读研究生,研究方向:基于回音壁微腔的窄线宽激光,邮箱:nolan58@163.com

    通讯作者:

    潘奕捷(1980-),中国计量科学研究院副研究员,研究方向:微腔光子测温与芯片级量子计量,邮箱:panyijie@nim.ac.cn

  • 中图分类号: TB96

Research Progress on Narrow Linewidth Lasers Based on Whispering Gallery Mode Microcavity

  • 摘要: 窄线宽激光凭借其极低的相位噪声,在量子技术、时频传输、高精度传感等前沿领域发挥着至关重要的作用。回音壁模式光学微腔,得益于其高品质因子、小模式体积和宽光学透明窗口的特性,能够极大地增强光与物质的相互作用,不仅在较宽的谱段范围内可以获得良好的激光线宽压窄效果,而且具有良好的可调谐特性,因此成为了窄线宽激光研究领域的热点。回顾了基于回音壁微腔的窄线宽激光研究进展,首先介绍了回音壁微腔及其热噪声理论基础和激光线宽评价原理,随后讨论了当前基于回音壁微腔产生窄线宽激光的主要方法,包括基于受激布里渊散射与受激拉曼散射效应的泵浦式窄线宽激光,以及基于自注入锁定与PDH锁定技术的锁定式窄线宽激光,梳理了它们的研究现状、关键技术特点以及性能指标。介绍了中国计量科学研究院在基于高品质因子晶体回音壁微腔窄线宽激光方面的研究进展,并对回音壁微腔窄线宽激光的发展进行了总结与展望。
  • 图  1  布里渊激光的产生原理示意图

    Figure  1.  Schematic diagram of the generation principle of Brillouin laser

    图  2  拉曼激光的产生原理示意图

    Figure  2.  Schematic diagram of the generation principle of Raman laser

    图  3  自注入锁定技术示意图

    Figure  3.  Schematic diagram of self-injection locking technology

    图  4  PDH锁定技术示意图

    Figure  4.  Schematic diagram of PDH locking technology

    图  5  中国计量院自研小型化窄线宽激光系统相位噪声

    Figure  5.  Phase noise of miniaturized narrow linewidth laser system developed by National Institute of Metrology

  • [1] Olsson S L I, Cho J, Chandrasekhar S, et al. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection[J]. Optics Express, 2018, 26(4): 4522-4530. doi: 10.1364/OE.26.004522
    [2] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 2018, 359(6378): 884-887. doi: 10.1126/science.aao1968
    [3] Corato-Zanarella M, Gil-Molina A, Ji X C, et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths[J]. Nature Photonics, 2023, 17(2): 157-164. doi: 10.1038/s41566-022-01120-w
    [4] Siegman A E. Lasers [M]. University science books, 1986.
    [5] Yariv A, Yeh P. Photonics: optical electronics in modern communications [M]. Oxford university press, 2007.
    [6] Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488. doi: 10.1038/nphys343
    [7] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [8] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. doi: 10.1038/nphoton.2012.217
    [9] Matei D G, Legero T, Hafner S, et al. 1.5 um Lasers with Sub-10 mHz Linewidth[J]. Physical Review Letters, 2017, 118(26): 263202. doi: 10.1103/PhysRevLett.118.263202
    [10] Van V. Optical microring resonators: theory, techniques, and applications [M]. CRC Press, 2016.
    [11] Vincent S, Subramanian S, Vollmer F. Optoplasmonic characterisation of reversible disulfide interactions at single thiol sites in the attomolar regime[J]. Nature Communications, 2020, 11(1): 2043. doi: 10.1038/s41467-020-15822-8
    [12] Liao J, Yang L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements [J]. Light: Science & Applications, 2021, 10(1): 32.
    [13] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 2013, 8(2): 145-152.
    [14] Yu D S, Chen J B, Zhang S G. Active whispering-gallery microclock in pulsed-operation mode[J]. Physical Review A, 2023, 107(4): 043712. doi: 10.1103/PhysRevA.107.043712
    [15] Lim J, Savchenkov A A, Dale E, et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization[J]. Nature communications, 2017, 8(1): 8. doi: 10.1038/s41467-017-00021-9
    [16] Strutt J W, Rayleigh B. The problem of the whispering gallery[J]. Philosophical magazine, 1910, 20(5).
    [17] 唐水晶, 李贝贝, 肖云峰. 回音壁模式光学微腔传感[J]. 物理, 2019, 48(3): 137-147. doi: 10.7693/wl20190301
    [18] Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Applied Physics B, 2006, 83(4): 531-536. doi: 10.1007/s00340-006-2225-y
    [19] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602. doi: 10.1103/PhysRevLett.93.250602
    [20] Matsko A B, Savchenkov A A, Yu N, et al. Whispering-gallery-mode resonators as frequency references I Fundamental limitations[J]. Journal of the Optical Society of America B, 2007, 24(6): 1324-1335. doi: 10.1364/JOSAB.24.001324
    [21] Savchenkov A A, Matsko A B, Ilchenko V S, et al. Whispering-gallery-mode resonators as frequency references II Stabilization[J]. Journal of the Optical Society of America B, 2007, 24(12): 2988-2997. doi: 10.1364/JOSAB.24.002988
    [22] Hjelme D R, Mickelson A R, Beausoleil R G. Semiconductor laser stabilization by external optical feedback[J]. IEEE Journal of Quantum Electronics, 1991, 27(3): 352-372. doi: 10.1109/3.81333
    [23] Di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics, 2010, 49(25): 4801-4807. doi: 10.1364/AO.49.004801
    [24] Liang W, Ilchenko V S, Eliyahu D, et al. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 2015, 6(1): 7371. doi: 10.1038/ncomms8371
    [25] Chen S Y, Sun T, Grattan K T V, et al. Characteristics of Er and Er–Yb–Cr doped phosphate microsphere fibre lasers[J]. Optics Communications, 2009, 282(18): 3765-3769. doi: 10.1016/j.optcom.2009.06.019
    [26] Li M, Gan J, Zhang Z, et al. Single mode compound microsphere laser[J]. Optics Communications, 2018, 420(1): 1-5.
    [27] Zhao J, Zhang C, Ji Z, et al. Widely tunable ultra-narrow linewidth single-longitudinal-mode Brillouin fiber laser with low threshold[J]. Laser Physics, 2014, 24(10): 105102. doi: 10.1088/1054-660X/24/10/105102
    [28] Chen M, Meng Z, Zhou H. Low-threshold, single-mode, compact Brillouin/erbium fiber ring laser[J]. Journal of Lightwave Technology, 2013, 31(12): 1980-1986. doi: 10.1109/JLT.2013.2263297
    [29] Grudinin I S, Matsko A B, Maleki L. Brillouin lasing with a CaF2 whispering gallery mode resonator[J]. Physical Review Letters, 2009, 102(4): 043902. doi: 10.1103/PhysRevLett.102.043902
    [30] Gundavarapu S, Brodnik G M, Puckett M, et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser[J]. Nature Photonics, 2019, 13(1): 60-67. doi: 10.1038/s41566-018-0313-2
    [31] Debut A, Randoux S, Zemmouri J. Linewidth narrowing in Brillouin lasers: Theoretical analysis[J]. Physical Review A, 2000, 62(2): 023803. doi: 10.1103/PhysRevA.62.023803
    [32] Debut A, Randoux S, Zemmouri J. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers[J]. JOSA B, 2001, 18(4): 556-567. doi: 10.1364/JOSAB.18.000556
    [33] Sonehara T, Konno Y, Kaminaga H, et al. Frequency-modulated stimulated Brillouin spectroscopy in crystals[J]. JOSA B, 2007, 24(5): 1193-1198. doi: 10.1364/JOSAB.24.001193
    [34] Botter R, Ye K, Klaver Y, et al. Guided-acoustic stimulated Brillouin scattering in silicon nitride photonic circuits[J]. Science Advances, 2022, 8(40): 2196. doi: 10.1126/sciadv.abq2196
    [35] Lee H, Chen T, Li J, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 2012, 6(6): 369-373. doi: 10.1038/nphoton.2012.109
    [36] Loh W, Becker J, Cole D C, et al. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth[J]. New Journal of Physics, 2016, 18(4): 045001. doi: 10.1088/1367-2630/18/4/045001
    [37] Lu T, Yang L, Carmon T, et al. A Narrow-Linewidth On-Chip Toroid Raman Laser[J]. IEEE Journal of Quantum Electronics, 2011, 47(3): 320-326. doi: 10.1109/JQE.2010.2087742
    [38] Liu K, Yao S, Ding Y, et al. Fundamental linewidth of an AlN microcavity Raman laser[J]. Optics Letters, 2022, 47(17): 4295-4298. doi: 10.1364/OL.466195
    [39] Vassiliev V V, Velichansky V L, Ilchenko V S, et al. Narrow-line-width diode laser with a high-Q microsphere resonator[J]. Optics Communications, 1998, 158(1-6): 305-312. doi: 10.1016/S0030-4018(98)00578-1
    [40] Kondratiev N M, Lobanov V E, Cherenkov A V, et al. Self-injection locking of a laser diode to a high-Q WGM microresonator[J]. Optics Express, 2017, 25(23): 28167-28178. doi: 10.1364/OE.25.028167
    [41] Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser[J]. Optics Letters, 2010, 35(16): 2822-2824. doi: 10.1364/OL.35.002822
    [42] Ilchenko V, Dale E, Liang W, et al. Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator [C]. Laser Resonators and Beam Control XIII. SPIE, 2011.
    [43] Kudryashov A V, Paxton A H, Ilchenko V S, et al. On phase noise of self-injection locked semiconductor lasers [C]. Laser Resonators, Microresonators, and Beam Control XVI. SPIE, 2014.
    [44] Savchenkov A A, Chiow S-W, Ghasemkhani M, et al. Self-injection locking efficiency of a UV Fabry–Perot laser diode[J]. Optics Letters, 2019, 44(17): 4175-4178. doi: 10.1364/OL.44.004175
    [45] Donvalkar P S, Savchenkov A, Matsko A. Self-injection locked blue laser[J]. Journal of Optics, 2018, 20(4): 045801. doi: 10.1088/2040-8986/aaae4f
    [46] Xie Z, Liang W, Savchenkov A A, et al. Extended ultrahigh-Q-cavity diode laser[J]. Optics Letters, 2015, 40(11): 2596-2599. doi: 10.1364/OL.40.002596
    [47] Lai Y-H, Eliyahu D, Ganji S, et al. 780 nm narrow-linewidth self-injection-locked WGM lasers [C]. Laser Resonators, Microresonators, and Beam Control XXII. 2020.
    [48] Lai Y-H, Love S, Savchenkov A, et al. 871nm Ultra-Narrow-Linewidth Laser for Yb+ Clock [C]. CLEO: Science and Innovations. Optica Publishing Group, 2021.
    [49] Dale E, Bagheri M, Matsko A B, et al. Microresonator stabilized 2 mum distributed-feedback GaSb-based diode laser[J]. Optics Letters, 2016, 41(23): 5559-5562. doi: 10.1364/OL.41.005559
    [50] Savchenkov A A, Eliyahu D, Heist B, et al. On acceleration sensitivity of 2 mum whispering gallery mode-based semiconductor self-injection locked laser[J]. Applied Optics, 2019, 58(9): 2138-2145. doi: 10.1364/AO.58.002138
    [51] Galiev R R, Pavlov N G, Kondratiev N M, et al. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators[J]. Optics Express, 2018, 26(23): 30509-30522. doi: 10.1364/OE.26.030509
    [52] Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 2018, 12(11): 694-698. doi: 10.1038/s41566-018-0277-2
    [53] Xiang C, Guo J, Jin W, et al. High-performance lasers for fully integrated silicon nitride photonics[J]. Nature Communications, 2021, 12(1): 6650. doi: 10.1038/s41467-021-26804-9
    [54] Jin W, Yang Q-F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 2021, 15(5): 346-353. doi: 10.1038/s41566-021-00761-7
    [55] Alnis J, Schliesser A, Wang C Y, et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization[J]. Physical Review A, 2011, 84(1): 011804. doi: 10.1103/PhysRevA.84.011804
    [56] Loh W, Green A A S, Baynes F N, et al. Dual-microcavity narrow-linewidth Brillouin laser[J]. Optica, 2015, 2(3): 225-232. doi: 10.1364/OPTICA.2.000225
    [57] Liu K, Dallyn J H, Brodnik G M, et al. Photonic circuits for laser stabilization with ultra-low-loss and nonlinear resonators[J]. arXiv preprint arXiv: 2107.03595, 2021.
    [58] Qu Z, Liu X, Zhang C, et al. Fabrication of an ultra-high quality MgF 2 micro-resonator for a single soliton comb generation[J]. Optics Express, 2023, 31(2): 3005-3016. doi: 10.1364/OE.478863
  • 加载中
图(5)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  40
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 录用日期:  2024-04-09
  • 修回日期:  2024-04-10
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回