[1] |
Olsson S L I, Cho J, Chandrasekhar S, et al. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection[J]. Optics Express, 2018, 26(4): 4522-4530. doi: 10.1364/OE.26.004522
|
[2] |
Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 2018, 359(6378): 884-887. doi: 10.1126/science.aao1968
|
[3] |
Corato-Zanarella M, Gil-Molina A, Ji X C, et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths[J]. Nature Photonics, 2023, 17(2): 157-164. doi: 10.1038/s41566-022-01120-w
|
[4] |
Siegman A E. Lasers [M]. University science books, 1986.
|
[5] |
Yariv A, Yeh P. Photonics: optical electronics in modern communications [M]. Oxford university press, 2007.
|
[6] |
Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488. doi: 10.1038/nphys343
|
[7] |
Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
|
[8] |
Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. doi: 10.1038/nphoton.2012.217
|
[9] |
Matei D G, Legero T, Hafner S, et al. 1.5 um Lasers with Sub-10 mHz Linewidth[J]. Physical Review Letters, 2017, 118(26): 263202. doi: 10.1103/PhysRevLett.118.263202
|
[10] |
Van V. Optical microring resonators: theory, techniques, and applications [M]. CRC Press, 2016.
|
[11] |
Vincent S, Subramanian S, Vollmer F. Optoplasmonic characterisation of reversible disulfide interactions at single thiol sites in the attomolar regime[J]. Nature Communications, 2020, 11(1): 2043. doi: 10.1038/s41467-020-15822-8
|
[12] |
Liao J, Yang L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements [J]. Light: Science & Applications, 2021, 10(1): 32.
|
[13] |
Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 2013, 8(2): 145-152.
|
[14] |
Yu D S, Chen J B, Zhang S G. Active whispering-gallery microclock in pulsed-operation mode[J]. Physical Review A, 2023, 107(4): 043712. doi: 10.1103/PhysRevA.107.043712
|
[15] |
Lim J, Savchenkov A A, Dale E, et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization[J]. Nature communications, 2017, 8(1): 8. doi: 10.1038/s41467-017-00021-9
|
[16] |
Strutt J W, Rayleigh B. The problem of the whispering gallery[J]. Philosophical magazine, 1910, 20(5).
|
[17] |
唐水晶, 李贝贝, 肖云峰. 回音壁模式光学微腔传感[J]. 物理, 2019, 48(3): 137-147. doi: 10.7693/wl20190301
|
[18] |
Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Applied Physics B, 2006, 83(4): 531-536. doi: 10.1007/s00340-006-2225-y
|
[19] |
Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602. doi: 10.1103/PhysRevLett.93.250602
|
[20] |
Matsko A B, Savchenkov A A, Yu N, et al. Whispering-gallery-mode resonators as frequency references I Fundamental limitations[J]. Journal of the Optical Society of America B, 2007, 24(6): 1324-1335. doi: 10.1364/JOSAB.24.001324
|
[21] |
Savchenkov A A, Matsko A B, Ilchenko V S, et al. Whispering-gallery-mode resonators as frequency references II Stabilization[J]. Journal of the Optical Society of America B, 2007, 24(12): 2988-2997. doi: 10.1364/JOSAB.24.002988
|
[22] |
Hjelme D R, Mickelson A R, Beausoleil R G. Semiconductor laser stabilization by external optical feedback[J]. IEEE Journal of Quantum Electronics, 1991, 27(3): 352-372. doi: 10.1109/3.81333
|
[23] |
Di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics, 2010, 49(25): 4801-4807. doi: 10.1364/AO.49.004801
|
[24] |
Liang W, Ilchenko V S, Eliyahu D, et al. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 2015, 6(1): 7371. doi: 10.1038/ncomms8371
|
[25] |
Chen S Y, Sun T, Grattan K T V, et al. Characteristics of Er and Er–Yb–Cr doped phosphate microsphere fibre lasers[J]. Optics Communications, 2009, 282(18): 3765-3769. doi: 10.1016/j.optcom.2009.06.019
|
[26] |
Li M, Gan J, Zhang Z, et al. Single mode compound microsphere laser[J]. Optics Communications, 2018, 420(1): 1-5.
|
[27] |
Zhao J, Zhang C, Ji Z, et al. Widely tunable ultra-narrow linewidth single-longitudinal-mode Brillouin fiber laser with low threshold[J]. Laser Physics, 2014, 24(10): 105102. doi: 10.1088/1054-660X/24/10/105102
|
[28] |
Chen M, Meng Z, Zhou H. Low-threshold, single-mode, compact Brillouin/erbium fiber ring laser[J]. Journal of Lightwave Technology, 2013, 31(12): 1980-1986. doi: 10.1109/JLT.2013.2263297
|
[29] |
Grudinin I S, Matsko A B, Maleki L. Brillouin lasing with a CaF2 whispering gallery mode resonator[J]. Physical Review Letters, 2009, 102(4): 043902. doi: 10.1103/PhysRevLett.102.043902
|
[30] |
Gundavarapu S, Brodnik G M, Puckett M, et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser[J]. Nature Photonics, 2019, 13(1): 60-67. doi: 10.1038/s41566-018-0313-2
|
[31] |
Debut A, Randoux S, Zemmouri J. Linewidth narrowing in Brillouin lasers: Theoretical analysis[J]. Physical Review A, 2000, 62(2): 023803. doi: 10.1103/PhysRevA.62.023803
|
[32] |
Debut A, Randoux S, Zemmouri J. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers[J]. JOSA B, 2001, 18(4): 556-567. doi: 10.1364/JOSAB.18.000556
|
[33] |
Sonehara T, Konno Y, Kaminaga H, et al. Frequency-modulated stimulated Brillouin spectroscopy in crystals[J]. JOSA B, 2007, 24(5): 1193-1198. doi: 10.1364/JOSAB.24.001193
|
[34] |
Botter R, Ye K, Klaver Y, et al. Guided-acoustic stimulated Brillouin scattering in silicon nitride photonic circuits[J]. Science Advances, 2022, 8(40): 2196. doi: 10.1126/sciadv.abq2196
|
[35] |
Lee H, Chen T, Li J, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 2012, 6(6): 369-373. doi: 10.1038/nphoton.2012.109
|
[36] |
Loh W, Becker J, Cole D C, et al. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth[J]. New Journal of Physics, 2016, 18(4): 045001. doi: 10.1088/1367-2630/18/4/045001
|
[37] |
Lu T, Yang L, Carmon T, et al. A Narrow-Linewidth On-Chip Toroid Raman Laser[J]. IEEE Journal of Quantum Electronics, 2011, 47(3): 320-326. doi: 10.1109/JQE.2010.2087742
|
[38] |
Liu K, Yao S, Ding Y, et al. Fundamental linewidth of an AlN microcavity Raman laser[J]. Optics Letters, 2022, 47(17): 4295-4298. doi: 10.1364/OL.466195
|
[39] |
Vassiliev V V, Velichansky V L, Ilchenko V S, et al. Narrow-line-width diode laser with a high-Q microsphere resonator[J]. Optics Communications, 1998, 158(1-6): 305-312. doi: 10.1016/S0030-4018(98)00578-1
|
[40] |
Kondratiev N M, Lobanov V E, Cherenkov A V, et al. Self-injection locking of a laser diode to a high-Q WGM microresonator[J]. Optics Express, 2017, 25(23): 28167-28178. doi: 10.1364/OE.25.028167
|
[41] |
Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser[J]. Optics Letters, 2010, 35(16): 2822-2824. doi: 10.1364/OL.35.002822
|
[42] |
Ilchenko V, Dale E, Liang W, et al. Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator [C]. Laser Resonators and Beam Control XIII. SPIE, 2011.
|
[43] |
Kudryashov A V, Paxton A H, Ilchenko V S, et al. On phase noise of self-injection locked semiconductor lasers [C]. Laser Resonators, Microresonators, and Beam Control XVI. SPIE, 2014.
|
[44] |
Savchenkov A A, Chiow S-W, Ghasemkhani M, et al. Self-injection locking efficiency of a UV Fabry–Perot laser diode[J]. Optics Letters, 2019, 44(17): 4175-4178. doi: 10.1364/OL.44.004175
|
[45] |
Donvalkar P S, Savchenkov A, Matsko A. Self-injection locked blue laser[J]. Journal of Optics, 2018, 20(4): 045801. doi: 10.1088/2040-8986/aaae4f
|
[46] |
Xie Z, Liang W, Savchenkov A A, et al. Extended ultrahigh-Q-cavity diode laser[J]. Optics Letters, 2015, 40(11): 2596-2599. doi: 10.1364/OL.40.002596
|
[47] |
Lai Y-H, Eliyahu D, Ganji S, et al. 780 nm narrow-linewidth self-injection-locked WGM lasers [C]. Laser Resonators, Microresonators, and Beam Control XXII. 2020.
|
[48] |
Lai Y-H, Love S, Savchenkov A, et al. 871nm Ultra-Narrow-Linewidth Laser for Yb+ Clock [C]. CLEO: Science and Innovations. Optica Publishing Group, 2021.
|
[49] |
Dale E, Bagheri M, Matsko A B, et al. Microresonator stabilized 2 mum distributed-feedback GaSb-based diode laser[J]. Optics Letters, 2016, 41(23): 5559-5562. doi: 10.1364/OL.41.005559
|
[50] |
Savchenkov A A, Eliyahu D, Heist B, et al. On acceleration sensitivity of 2 mum whispering gallery mode-based semiconductor self-injection locked laser[J]. Applied Optics, 2019, 58(9): 2138-2145. doi: 10.1364/AO.58.002138
|
[51] |
Galiev R R, Pavlov N G, Kondratiev N M, et al. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators[J]. Optics Express, 2018, 26(23): 30509-30522. doi: 10.1364/OE.26.030509
|
[52] |
Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 2018, 12(11): 694-698. doi: 10.1038/s41566-018-0277-2
|
[53] |
Xiang C, Guo J, Jin W, et al. High-performance lasers for fully integrated silicon nitride photonics[J]. Nature Communications, 2021, 12(1): 6650. doi: 10.1038/s41467-021-26804-9
|
[54] |
Jin W, Yang Q-F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 2021, 15(5): 346-353. doi: 10.1038/s41566-021-00761-7
|
[55] |
Alnis J, Schliesser A, Wang C Y, et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization[J]. Physical Review A, 2011, 84(1): 011804. doi: 10.1103/PhysRevA.84.011804
|
[56] |
Loh W, Green A A S, Baynes F N, et al. Dual-microcavity narrow-linewidth Brillouin laser[J]. Optica, 2015, 2(3): 225-232. doi: 10.1364/OPTICA.2.000225
|
[57] |
Liu K, Dallyn J H, Brodnik G M, et al. Photonic circuits for laser stabilization with ultra-low-loss and nonlinear resonators[J]. arXiv preprint arXiv: 2107.03595, 2021.
|
[58] |
Qu Z, Liu X, Zhang C, et al. Fabrication of an ultra-high quality MgF 2 micro-resonator for a single soliton comb generation[J]. Optics Express, 2023, 31(2): 3005-3016. doi: 10.1364/OE.478863
|