Effect of paddy varieties on the measurement accuracy of capacitive grain moisture tester
-
摘要: 电容法谷物水分测定仪作为快速测量谷物水分的仪器,广泛应用于粮食的贸易结算环节,属于国家实施强制管理的计量器具之一。基于电容法测量原理的水分仪,稻谷含水率的测量准确度受到诸多因素影响。对稻谷品种这一影响因素作相关试验研究分析。通过在含水率约11.5%、16.5%两个水分点,使用3台电容法水分仪分别对7种不同品种的稻谷进行含水率测量试验,结果表明稻谷品种对电容法谷物水分仪的测量准确度有显著影响,不宜使用同一台水分仪对不同品种的稻谷进行含水率测量。Abstract: As an instrument to measure grain moisture rapidly, capacitive grain moisture tester is widely used in grain trade settlement, and it is one of the measuring instruments under compulsory management of the state. The measurement accuracy of paddy moisture content based on the principle of capacitive method is affected by many factors. In this paper, the influence factors of paddy varieties are studied and analyzed. The moisture content of 7 different varieties of paddy was measured by 3 capacitive grain moisture testers at two moisture points of about 11.5% and 16.5% respectively. The results show that the paddy varieties have significant influence on the measurement accuracy of the capacitive grain moisture tester, and it is not advisable to use the same moisture tester to measure the water content of different varieties of paddy.
-
Key words:
- metrology /
- capacitive method /
- moisture tester /
- moisture content /
- paddy variety /
- accuracy
-
表 1 较低含水率下的测量结果
Table 1. Measurement results at lower moisture content
单位:% 稻谷品种 沪软 1212 沪粳137 秀水134 秋优金丰 沪香粳106 银香38 南粳46 $k1 $ $ k2 $ $ k3 $ $ k4 $ $ k5 $ $ k6 $ $ k7 $ $ {M}_{2} $ 11.8 11.3 11.3 11.9 11.3 11.9 11.9 1# $ {M}_{1} $ 12.7 11.6 12.5 12.1 12.3 12.2 11.7 $ \Delta M $ 0.9 0.3 1.2 0.2 1.0 0.3 −0.2 2# $ {M}_{1} $ 12.7 11.5 12.4 11.9 12.1 12.2 11.5 $ \Delta M $ 0.9 0.2 1.1 0.0 0.8 0.3 −0.4 3# $ {M}_{1} $ 12.6 11.4 12.2 11.8 12.1 12.1 11.4 $ \Delta M $ 0.8 0.1 0.9 −0.1 0.8 0.2 −0.5 表 2 较高含水率下的测量结果
Table 2. Measurement results at higher moisture content
单位:% 稻谷品种 沪软 1212 沪粳137 花优14 松早香 南粳46 崇明 申优26 $ k8 $ $ {k}9 $ $ {k}10 $ $ {k}11 $ $ {k}12 $ $ {k}13 $ $ {k}14 $ $ {M}_{2} $ 15.8 16.5 17.0 17.0 16.6 16.1 15.8 1# $ {M}_{1} $ 15.8 17.0 17.6 17.5 17.5 16.1 16.0 $ \Delta M $ 0.0 0.5 0.6 0.5 0.9 0.0 0.2 2# $ {M}_{1} $ 15.9 16.9 17.4 17.5 17.5 16.1 15.9 $ \Delta M $ 0.1 0.4 0.4 0.5 0.9 0.0 0.1 3# $ {M}_{1} $ 15.7 16.9 17.3 17.4 17.5 15.9 15.8 $ \Delta M $ -0.1 0.4 0.3 0.4 0.9 -0.2 0.0 表 3 水分仪测量数据分析
Table 3. Analysis of measurement data of moisture tester
实际含水率
平均值(%)水分仪
编号测量结果
平均值$ x $(%)$ x $的示值
误差(%)$ x $的标准
偏差(%)16.40 1# 16.79 0.39 0.33 2# 16.75 0.35 0.31 3# 16.64 0.24 0.38 11.63 1# 12.16 0.53 0.51 2# 12.06 0.43 0.54 3# 11.94 0.31 0.53 -
[1] International Organization for Legal Metrology. Moisture meters for cereal grains and oilseeds. Part 1: Metrological and technical requirements: R 59-1 Edition 2016 (E) [S]. OMIL, 2016. [2] 蔡泽宇, 刘政, 张光跃, 等. 谷物含水率测量技术研究进展[J]. 中国农机化学报, 2021, 42(4): 99-109. [3] 陈建伟, 贾继荣, 周广斌. 粮食“国标水分”和“安全水分”的区别和应用[J]. 粮油科学与工程, 2024, 38(1): 1-2,6. doi: 10.3969/j.issn.1674-5280.2024.01.001 [4] 张晓波, 顾晓红, 单红, 等, 便携式谷物水分测定仪的精密度和准确度分析[J]. 粮食与饲料工业, 1999, 5, 44-45. [5] Li C, Zhao C, Ren Y, et al. Microwave traveling-standing wave method for density-independent detection of grain moisture content[J], Measurement, 2022, 198. [6] B. S J, Sheng W. , Dani O . Dielectric Measurement of Agricultural Grain Moisture—Theory and Applications [J]. Sensors, 2022, 22 (6): 2083-2083. [7] 郭文川, 王婧, 朱新华. 基于介电特性的燕麦含水率预测[J]. 农业工程学报, 2012, 28(24): 272-279. [8] Li C. , Yu X. , Chen Z. , Song Q. , Xu Y. Free space traveling–standing wave attenuation method for microwave sensing of grain moisture content[J]. Measurement and Control, 2021, 54 (3-4): 336-345. [9] 梁尹明, 章祖民, 张伟金, 等. PM-8188New谷物水分仪烘干稻谷适宜测定时间探讨[J]. 中国稻米, 2018, 24(6): 50-52,55. doi: 10.3969/j.issn.1006-8082.2018.06.011 [10] 陈小玉. 一种新型的快速检测粮食含水率的装置的设计[D]. 长春: 吉林大学, 2021. [11] Amira N R M , Hafiz M R F , Munirah L K , et al . A New Method of Rice Moisture Content Determination Using Voxel Weighting-Based from Radio Tomography Images. [J]. Sensors (Basel, Switzerland), 2021, 21(11): 3686-3686. [12] 徐宗季, 王平东, 袁华山, 等. 不同水分磨的粉碎细度对粮食水分含量的影响[J]. 粮食储藏, 2021, 50(1): 48-52. doi: 10.3969/j.issn.1000-6958.2021.01.010 [13] 阎晓光, 杜艳伟, 李洪, 等. 玉米籽粒水分的快测法误差分析[J]. 作物杂志, 2020(5): 170-173. [14] Song Q , Wei X , Sun W , et al. Design of Capacitive Paddy Moisture Sensor Based on Electrical Impedance Spectroscopy Analysis[J]. Applied Sciences, 2020, 10(11): 3968. [15] 张越, 赵进, 赵丽清, 等. 基于介电特性谷物水分在线测量仪的设计与试验[J]. 中国农机化学报, 2020, 41(5): 105-110. [16] 王润. 粮食温度对谷物水分测定仪结果的影响[J]. 粮油仓储科技通讯, 2023, 39(1): 45-47. doi: 10.3969/j.issn.1674-1943.2023.01.015 [17] Héctor P , Karina J , Mario G , et al. Determination of Moisture in Rice Grains Based on Visible Spectrum Analysis[J]. Agronomy, 2022, 12(12): 3021-3021. [18] Sun W, Wan L, Che G, et al. Design and Experiment of Capacitive Rice Online Moisture Detection Device.[J]. Sensors (Basel, Switzerland), 2023, 23(12): 5753. doi: 10.3390/s23125753 [19] 孙文胜. 电容式水稻在线水分检测装置的优化设计与试验研究[D]. 大庆: 黑龙江八一农垦大学, 2023. [20] 赵晨宇. 基于微波空间驻波法的谷物含水率无损检测方法及装置研究[D]. 长春: 吉林农业大学, 2023. [21] 黄健, 李南. 基于射频技术的谷物水分快速检测方法与标准方法的比较与分析[J]. 现代食品, 2023, 29(5): 186-188,192. [22] 孟敏刚, 张雪峰, 李成杰, 等. 稻谷落入姿势对电阻式水分仪检测精度的影响[J]. 农机化研究, 2024, 46(9): 192-197. doi: 10.3969/j.issn.1003-188X.2024.09.031 [23] 徐永阳, 邓安, 邱伟强, 等. 不同含水率稻谷电学物理量变化规律[J]. 食品工业, 2024, 45(2): 114-120. [24] 李泽峰, 金诚谦, 刘政, 等. 谷物联合收获机水分在线检测装置设计与标定[J], 中国农机化学报, 2019, 40(6): 145-151. [25] 张越, 赵进, 赵丽清, 等. 基于介电特性谷物水分在线测量仪的设计与试验[J]. 中国农机化学报, 2020, 41(5): 105-110. [26] 应火冬. 谷物介电性质及其在含水量测量中的应用[J]. 农业工程学报, 1992(3): 113-119. doi: 10.3321/j.issn:1002-6819.1992.03.016 [27] 周显青, 赵希雷, 张玉荣, 等. 谷物水分检测技术现状与展望[J], 粮食加工, 2015, 40 (4): 29~34. [28] 罗承铭. 基于电容法的谷物水分检测系统研究与设计[D]. 咸阳: 西北农林科技大学, 2011. [29] 罗承铭, 师帅兵. 电容法粮食物料含水率与介电常数关系研究[J]. 农机化研究, 2011, 33(4): 149-151. doi: 10.3969/j.issn.1003-188X.2011.04.038 [30] 陈育中. 基于电容式传感器的水分测试仪的设计与实现[J]. 制造业自动化, 2011, 33(24): 84-87. doi: 10.3969/j.issn.1009-0134.2011.12(x).28 [31] 董娜, 李伟航, 杨忠宝. 粮食水分测定方法与设备[J]. 粮食加工, 2021, 46(5): 87-91. [32] JJG891-2019, 电容法和电阻法谷物水分测定仪[S], 北京:中国标准出版社, 2020 [33] 刘志壮, 吕贵勇. 基于电容法的稻谷含水率检测[J]. 农业机械学报, 2013, 44(7): 179-182. doi: 10.6041/j.issn.1000-1298.2013.07.031