Research Progress in Optical Quantum Pressure Standards
-
摘要: 光学法量子压力标准具有原级测量、极高分辨率、固有准确、不依赖某一实物标准的巨大优势,是新一代压力计量基准的发展方向。国内外多家计量研究机构及大学均开展了相关研究。介绍了基于法布里-珀罗腔的光学法量子压力测量的工作原理,综述了国内外在光学法量子压力领域的研究现状,回顾了中国计量科学研究院针对光学法量子压力标准装置性能提升研究开展的相关工作,包括真空出气效应抑制、零点误差消除、修正项独立测定等方面的研究进展,讨论了光学法量子压力标准未来的研究重点和发展趋势。Abstract: Optical quantum pressure standards offer significant advantages in primary measurement, including extremely high resolution, inherent accuracy, and independence from physical artifacts. These characteristics make them the preferred direction for developing next-generation pressure measurement benchmarks. Numerous metrology research institutions and universities worldwide have conducted relevant studies in this field. This paper introduces the working principle of optical quantum pressure measurement based on Fabry-Pérot cavities. It provides a comprehensive review of the current research status in optical quantum pressure standards both domestically and internationally. The article also recounts the work conducted by the National Institute of Metrology of China to enhance the performance of optical quantum pressure standard devices. This includes research progress in suppressing vacuum outgassing effects, eliminating zero-point errors, and independently determining correction factors. Furthermore, the paper discusses future research priorities and development trends for optical quantum pressure standards.
-
图 1 NIST ULE玻璃双FP腔[12]
Figure 1. NIST dual FP cavity made of a single block of ultra-low expansion (ULE) glass
图 2 基于气体调制法(GAMOR)的光学法量子压力测量原理图
注:(a)单次循环过程;(b)虚线:以任意拍频为起点,对应测量的系统拍频;红线:两次测量之间抽空腔的拍频;实线:修正由于加压充气导致的测量漂移后的拍频 [13]。
Figure 2. Schematic of optical quantum pressure measurement based on gas modulation (GAMOR) method
图 7 NIM-OPS与基准活塞压力计的比对测量结果[17]
Figure 7. Comparison results of NIM-OPS with the piston gauge standard
图 8 双腔比对压力测量结果
注:彩点是双腔测量得到的气体压力之差,黑点是一次测得的气体压力与薄膜压力计读数之差,红线为双腔结果之差的平均值∆P=3.0±3 Pa[19]。
Figure 8. Comparison of the pressure measurement results of the dual cavities
图 11 NIM-OPS 测量腔绝对谐振频率在30°C~38 °C随温度的变化及拟合得到的热膨胀系数与零膨胀温度点[23]
注:彩点是不同温度点下测量腔绝对谐振频率,黑点是拟合得到的零膨胀温度点,蓝线是根据拟合推导得到测量腔热膨胀系数。
Figure 11. Changes in absolute frequency of the MC measured in the temperature range 30°C to 38 °C and the fitting curve of CTE and its zero-point
图 12 30.1℃ (上)与36.8℃(下) 压力测量结果 [23]
注: (a) 抽真空过程 MC; (b) 充入1Pa 高纯氮气; (c) 快速充放1Pa压力时MC绝对频率(黑线)、CDG压力(蓝线)、OPS压力(红线)。
Figure 12. Pressure measurement results at 30.1 °C (top) and 36.8 °C (bottom)
-
[1] Yang Y C, Yue J. Calculation of Effective Area for the NIM Primary Pressure Standards[J]. PTB Mitteilungen, 2011, 121(3): 266-269. [2] Sharipov F, Yang Y C, Ricker J E, et al. Primary pressure standard based on piston-cylinder assemblies. Calculation of effective cross sectional area based on rarefied gas dynamics[J]. Metrologia, 2016, 53: 1177-1184. doi: 10.1088/0026-1394/53/5/1177 [3] 王博文, 马坤, 董嘉, 等. 基于有限元分析的活塞压力计形变系数理论计算[J/OL]. 计量学报. http://kns.cnki.net/kcms/detail/11.1864.TB.20240226.1123.006.html. [4] Milton M J T, Davis R, Fletcher N. Towards a new SI: a review of progress made since 2011[J]. Metrologia, 2014, 51: R21-R30. doi: 10.1088/0026-1394/51/3/R21 [5] Egan P F, Stone J A, Hendricks J H, et al. Performance of a dual Fabry-Perot cavity refractometer[J]. Opt Lett, 2015, 40(17): 3945-3948. doi: 10.1364/OL.40.003945 [6] Hendricks J. Quantum for pressure[J]. Nature Physics, 2018, 14(1): 100. doi: 10.1038/nphys4338 [7] Jousten K. A unit for nothing[J]. Nature Physics, 2019, 15: 618. doi: 10.1038/s41567-019-0530-8 [8] Gibney E. Pressure gets an upgrade[J]. Nature, 2019, 570: 424-425. doi: 10.1038/d41586-019-01950-9 [9] Egan P, Stone J A. Absolute refractometry of dry gas to ±3 parts in 109[J]. Applied optics, 2011, 50(19): 3076-3086. doi: 10.1364/AO.50.003076 [10] Ricker J , Hendricks J , Egan P , et al. Towards Photonic based Pascal Realization as a Primary Pressure Standard[J]. Journal of Physics Conference Series, 2018, 1065: 162018. [11] Jousten K, Hendricks J, Barker D, et al. Perspectives for a new realization of the pascal by optical methods[J]. Metrologia, 2017, 54(6): S146-S161. doi: 10.1088/1681-7575/aa8a4d [12] Egan P F, Stone J A, Ricker J E, et al. Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer[J]. The Review of scientific instruments, 2016, 87(5): 053113. doi: 10.1063/1.4949504 [13] Isak S, Thomas H, Martin Z, et al. Gas modulation refractometry for high-precision assessment of pressure under non-temperature-stabilized conditions[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2018, 36(3): 03E105. [14] Silander I, Forssén C, Zakrisson J, et al. Optical realization of the pascal—Characterization of two gas modulated refractometers[J]. Journal of Vacuum Science & Technology B, 2021, 39(4): 044201. [15] Silvestri Z, Bentouati D, Otal P, et al. Towards an improved helium-based refractometer for pressure measurements[C]. Acta IMEKO, 2020, 9(5): 305-309. [16] Takei Y, Arai K, Yoshida H, et al. Development of an optical pressure measurement system using an external cavity diode laser with a wide tunable frequency range[J]. Measurement, 2020, 151: 107090. doi: 10.1016/j.measurement.2019.107090 [17] Yang Y C, Rubin T, Sun J P. Characterization of a vacuum pressure standard based on optical refractometry using nitrogen developed at nim[J]. Vacuum, 2021, 194: 110598. doi: 10.1016/j.vacuum.2021.110598 [18] 许玉蓉, 刘洋洋, 王进, 等. 基于气体折射率方法的真空计量[J]. 物理学报, 2020, 69: 150601. doi: 10.7498/aps.69.20200706 [19] 刘洋洋, 胡常乐, 孙羽, 等. 双腔比对折射率法测定气体压力[J]. 物理学报, 2022, 71(8): 55-60. [20] 聂中梁, 王新广, 王进, 等. 光学压力计的标定及应用[J/OL]. 真空与低温. http://kns.cnki.net/kcms/detail/62.1125.O4.20240219.1508.002.html. [21] 范栋, 习振华, 贾文杰, 等. 量子真空计量标准中的非极性稀薄气体折射率测量研究[J]. 物理学报, 2021, 70(4): 144-152. [22] Yang Y C, Ma K, Rubin Tom, et al. ANALYSIS OF THE OUTGASSING IN AN OPTICAL PRESSURE STANDARD[C]. IMEKO 24thTC3, 14thTC5, 6thTC16 and 5thTC22 International Conference, 2022. [23] Ma K, Yang Y C, Feng X J. Low-pressure performance of a Fabry–Pérot cavity based optical pressure standard working at the zero-thermal-expansion temperature[J]. Vacuum Volume, 2024, 221: 112861. doi: 10.1016/j.vacuum.2023.112861 [24] Yang Y C, Egan P F, Rubin T. Working equation for a fabry-perot cavity based optical pressure standard[C]. 2023 CCM & IMEKO International Conference on Pressure and Vacuum Metrology, 2023. [25] Durand M, Wang Y, Lawall J. Accurate Gouy phase measurement in an astigmatic optical cavity[J]. Applied Physics B, 2012, 108: 749-753. doi: 10.1007/s00340-012-5147-x [26] Silander I, Zakrisson J, Silva de Oliveira V, et al. In situ determination of the penetration depth of mirrors in Fabry-Perot refractometers and its influence on assessment of refractivity and pressure[J]. Opt Express, 2022, 30: 1. doi: 10.1364/OE.439226 [27] Yang Y C, Rubin T. Simulation of pressure induced length change of an optical cavity used for optical pressure standard[C]. Journal of Physics: Conference Series, 2018. [28] Egan P F, Stone J A, Scherschligt J K, et al. Measured relationship between thermodynamic pressure and refractivity for six candidate gases in laser barometry[J]. Journal of Vacuum Science & Technology A, 2019, 37: 031603. [29] Egan P F, Yang Y C. Optical n(p, T90) Measurement Suite 1: He, Ar, and N2, Int. J[J]. Theosophy’s, 2023, 44: 1. [30] Lesiuk M, Jeziorski B. First-principles calculation of the frequency-dependent dipole polarizability of argon[J]. Physical Review A, 2023, 107: 042805. doi: 10.1103/PhysRevA.107.042805 [31] Shaul K R S, Schultz A J, Kofke D A, et al. Semiclassical fifth virial coefficients for improved ab initio helium-4 standards[J]. Chemical Physics Letters, 2012, 531: 11-17. doi: 10.1016/j.cplett.2012.02.013 [32] Puchalski M, Piszczatowski K, Komasa J, et al. Theoretical determination of the polarizability dispersion and the refractive index of helium[J]. Physical Review A, 2016, 93(3): 032515. doi: 10.1103/PhysRevA.93.032515 [33] Rourke P M C. Perspective on the Refractive-Index Gas Metrology Data Landscape[J]. Journal of Physical and Chemical Reference Data, 2021, 50: 033104. doi: 10.1063/5.0055412 [34] Garberoglio G, Gaiser C, Gavioso R. M, et al. Ab Initio Calculation of Fluid Properties for Precision Metrology[C]. Journal of Physical and Chemical Reference Data, 2023. [35] Puchalski M, Lesiuk M, Jeziorski B. Relativistic treatment of the diamagnetic susceptibility of helium[J]. Physical Review A, 2023, 108: 042812. doi: 10.1103/PhysRevA.108.042812 [36] Zakrisson J, Silander I, Forssén C, et al. Procedure for robust assessment of cavity deformation in Fabry-Pérot based refractometers[J]. Journal of Vacuum Science & Technology B, 2020, 38: 054202. [37] Ricker J, Douglass K O, Hendricks J, et al. Determination of distortion corrections for a fixed length optical cavity pressure standard[J]. Measurement: Sensors, 2021, 18: 1. [38] Avdiaj S, Yang Y C, Jousten K, et al. Note: Diffusion constant and solubility of helium in ULE glass at 23 °C[J]. The Journal of Chemical Physics, 2018, 148(11): 116101. doi: 10.1063/1.5019015 [39] Takei Y, Telada S, Yoshida H, et al. Challenges of an optical pressure standard in medium vacuum measurements[J]. Measurement: Sensors, 2022, 22: 100371. doi: 10.1016/j.measen.2022.100371