Research on the Verification Method of Vehicle Horn Monitoring System
-
摘要: 机动车鸣笛监测系统作为非现场执法系统,是交警部门对查处机动车违法鸣笛行为的一种有效执法手段,其抓拍结果的可靠性需要受到广泛关注。从机动车鸣笛监测系统的声源定位算法原理出发,分别对国家检定规程中的检定项目:声压级测量误差、空间分辨力、定位误差、有效识别区域和声光图像时间一致性进行测量。通过分析不同频率不同位置声源的定位结果得到鸣笛监测系统的相关规律,结果表明声压级测量应在消声室进行检定以避免不必要的声反射;空间分辨力在不同频率与分辨角度存在反比例关系;定位误差由于Y方向受距离衰减影响较大,所以Y方向定位误差比X方向大。Abstract: As an off-site law enforcement system, the vehicle horn monitoring system is an effective tool for traffic police to monitor and penalize illegal vehicle horn usage. This study focuses on the verification methods for such systems, particularly analyzing the sound source localization algorithm principles. It investigates the key verification items listed in the national verification regulations, including measurement error of sound pressure level, spatial resolution, positioning error, effective identification area, and the time consistency of acousto-optic images. By analyzing the localization results of sound sources at different frequencies and positions, the study identifies patterns relevant to vehicle horn monitoring systems. The results show that sound pressure level measurements should be conducted in an anechoic chamber to minimize unnecessary sound reflections. Additionally, there is an inverse relationship between spatial resolution and resolution angle at different frequencies. Positioning error is more pronounced in the Y-axis direction due to greater distance attenuation effects, resulting in larger errors compared to the X-axis direction.
-
表 1 定位误差和有效识别区域测试结果
Table 1. Test results of positioning error and effective identification area
鸣笛声源
水平距离/m车道 方向 定位误差/m 厂家A 厂家B 15 车道1 X方向 −0.085 0.092 Y方向 0.305 0.475 车道2 X方向 0.095 0.088 Y方向 0.322 0.396 25 车道1 X方向 −0.102 0.122 Y方向 0.722 −0.813 车道2 X方向 −0.095 0.113 Y方向 0.705 −0.786 35 车道1 X方向 0.135 0.157 Y方向 0.882 0.963 车道2 X方向 0.136 0.145 Y方向 0.903 0.988 表 2 厂家A在不同距离下的声光图像时间一致性
Table 2. Time consistency of Factory A at different distances
距离/m 15 25 35 声光时间图像
时间一致性/ms第1次 20 32 18 第2次 26 45 22 第3次 32 28 38 平均值 26 35 26 表 3 厂家B在不同距离下的声光图像时间一致性
Table 3. Time consistency of Factory B's acousto-optic images at different distances
距离/m 15 25 35 声光时间图像
时间一致性/ms第1次 33 22 46 第2次 35 26 25 第3次 46 38 54 平均值 38 29 42 -
[1] 国务院. 中国人民共和国道路交通安全法实施条例[Z]. 2004-04-30. [2] M S Brandstein, Harvey F Sliverman. A practical methodology for speech source localization with microphone arrays[J]. Computer Speecch & Language, 1997, 11(2): 91-126. [3] Carter G C. Variance bounds for passively locating an acoustic source with a symmetric line array[J]. Journal of the Acoustical Society of America, 1977, 62(4): 922-926. doi: 10.1121/1.381623 [4] Hahn W R. Optimum signal processing for passive sonar range and bearing estimation[J]. Journal of the Acoustical Society of America, 1975, 58(1): 201-207. doi: 10.1121/1.380646 [5] Kook H, Moebs G B, Davies P, et al. An Efficient Procedure for Visualizing the Sound Field Radiated by Vehicles During Standardized Pass by Tests[J]. Journal of Sound & Vibration, 2000, 233(1): 137-156. [6] Takano Y, Terada K, Aizawa E, et al. Development of a 2-Dimensional Microphone Array Measurement System for Noise Sources of Fast Moving Vehicles[J]. Proceedings of Internoise, 1992, 92: 1175-1178. [7] Schmidt R, Schmidt R O. Multiple emitter location and signal parameter estimation[J]. JEEE Transactions on Antennas & Propagation, 1986, 34(3): 276-280. [8] Wang H, Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. Acoustics Speech & Signal Processing IBEE Transactions on, 1985, 33(4): 823-831. [9] Knapp C, Carter G. The generalized correlation method for estimation of time delay[J]. Acoustics, Speech and Signal Processing, 1976, 24(4): 327-330. doi: 10.1109/TASSP.1976.1162828 [10] 李保伟, 张兴敢. 基于广义互相关改进的传声器阵列声源定位方法[J]. 南京大学学报(自然科学), 2020, 56(6): 917-922. [11] Nikunen J, Virtanen T . Time-difference of arrival model for spherical microphone arrays and application to direction of arrival estimation[C]. 25th European Signal Processing Conference (EUSIPCO), 2017. [12] Ho K C, Xu W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IBEE Transactions on Signal Processing, 2004, S2(9): 2453-2463. [13] Barsikow B , Iii W F K , Pfizenmaier E . Wheel/rail noise generated by a high-speed train investigated with a line array of microphones[J]. Journal of Sound & Vibration, 1987, 118(1): 99-122. [14] King W F, Bechert D. On the sources of wayside noise generated by high-speed trains[J]. Jounal of Sound & Vibration, 1979, 66(3): 311-332. [15] Asano F, Asoh H, Matsui T. Sound Source Localization and Separation in Near Field[J]. Ieice Transacctions on Fundamentals of Electronics Communications & Computer Sciences, 2000, 83(11): 2286-2294. [16] Ping Song, Chuangbo Hao, Jiangpeng Wu, et al. Acoustic source localization using 10-microphone array based on wireless sensor network[J]. Sensors & Actuators: A. Physical, 2017, 267: 376-384. [17] Liao C, Xiang X , Jia Y , et al. A Novel Method of Acoustic Source Localization Using Microphone Array[M]. New York : Springer, 2012. [18] Kim Y K . NOISE SOURCE VISUALIZATION DATA ACUMULATION AND DISPLAY DEVICE, METHOD, AND ACOUSTIC CAMERA SYSTEM: US 20170337938A1 [P]. 2017. [19] 袁芳, 闫建伟, 张勇, 等. 汽车鸣笛声实时抓拍的理论研究和系统实现[J]. 电声技术, 2018, 42(11): 13-15,21. [20] 张焕强, 黄时春, 蒋伟康. 基于传声器阵列的汽车鸣笛声定位算法及实现[J]. 噪声与振动控制, 2018, 38(3): 10-14. doi: 10.3969/j.issn.1006-1355.2018.03.002 [21] 李冰洋. 传声器阵列声源定位系统设计与实现[D]. 成都: 电子科技大学, 2020. [22] 牛锋, 何龙标, 秦朝琪, 等. 机动车鸣笛抓拍中的计量问题[J]. 计量技术, 2020(4): 3-5. [23] 秦朝琪, 黄杰, 白滢, 等. 机动车行进中鸣笛声监测的校准方法研究[J]. 计量科学与技术, 2021, 65(8): 42-45. doi: 10.12338/j.issn.2096-9015.2020.9033 [24] 陈勇, 吴鸣, 杨军. 传声器阵列声压级在线校准[J]. 应用声学, 2022, 41(4): 626-633. doi: 10.11684/j.issn.1000-310X.2022.04.015 [25] 戴金洲, 牛锋, 沙硕, 等. 机动车鸣笛抓拍系统校准技术研究[J]. 电子测量与仪器学报, 2021, 35(12): 182-188. [26] 吴晶. 鸣笛抓拍系统现场校准方法的研究与探讨[J]. 品牌与标准化, 2020(4): 71-72. doi: 10.3969/j.issn.1674-4977.2020.04.025 [27] 国家市场监督管理总局. 机动车鸣笛监测系统: JJG 1184-2022[S]. 北京: 中国标准出版社, 2022. [28] 黄杰. 鸣笛监测系统的声源定位与声压级校准方法研究[D]北京: 北京化工大学, 2022. [29] 国家市场监督管理总局. 声源识别定位系统(波束形成法): JJF 1496-2014[S]. 北京: 中国标准出版社, 2014. [30] Johnson D H , Dudgeon D E . Array Signal Processing: Concepts and Techniques[M]. P T R Prentice Hall, 1992.