Research on Characterization Method of Cardiac Troponin I by Hydrogen-Deuterium Exchange Mass Spectrometry
-
摘要: 急性心肌梗死(AMI)位于我国人群死亡因素排名之首,是临床上心血管疾病防治的重中之重。心肌肌钙蛋白I(cTnI)作为评价心肌损伤最可靠的临床指标,是目前诊断心梗的首选生物标志物和金标准。免疫学方法是临床检测AMI的常用方法,国内外众多诊断试剂供应商可以生产cTnI检测试剂盒,然而来自不同制造商的免疫测试系统对同一样本会产生不同的定值结果,一方面原因是不同供应商的商用免疫试剂盒在敏感性、特异性和选择性方面不同,另一方面原因是不同试剂盒所使用抗体不同,识别抗原表位区域不同,抗体与血清cTnI样本结合能力有差异,导致不同厂商试剂盒间定值结果不一致,从而影响临床诊断的准确性。定量结果的一致性和准确性与cTnI的结构息息相关。然而受限于cTnI的复杂性,溶液状态下cTnI的结构表征十分具有挑战性。通过实验条件优化和数据处理参数,建立了基于氢氘交换-质谱(HDX-MS)技术的cTnI HDX表征方法,并将其应用cTnI的抗原表位研究,同时该方法具有较好的普适性,可扩展至cTnI构象转变研究及动力学方法的开发等,为从蛋白结构角度促进cTnI的标准化奠定了技术基础。Abstract: Acute myocardial infarction (AMI) ranks first among the death factors in China, and is the top priority in the clinical prevention and treatment of cardiovascular diseases. Myocardial troponin I (cTnI), as the most reliable clinical index of evaluating myocardial injury, is currently the preferred biomarker and gold standard for the diagnosis of myocardial infarction. Immunology method is a common method of clinical detection AMI, many domestic and foreign diagnostic reagent suppliers can produce cTnI detection kit, but immune testing system from different manufacturers will produce different value results for the same sample, on the one hand, the commercial kits of different suppliers in sensitivity, specificity and selectivity, on the other hand is different kits used in different antibodies, identify antigen epitope region, antibody and serum cTnI sample binding ability differences, resulting in inconsistent results between different manufacturers, thus affect the accuracy of clinical diagnosis. The consistency and accuracy of the quantitative results are closely related to the structure of cTnI. However, due to the complexity of cTnI, the structural characterization of cTnI in the solution state is very challenging. Through experimental condition optimization and data processing parameters, the characterization method of cTnI HDX, based on hydrogen deuterium exchange-mass spectrometry (HDX-MS) technology, is established, and applied to the study of cTnI. Meanwhile, this method has good universality and can be easily extended to cTnI conformation transition study and the development of kinetic method, which lays the technical foundation for promoting the standardization of cTnI from the perspective of protein structure.
-
Key words:
- metrology /
- cardiac troponin I /
- epitope /
- H/D exchange /
- mass spectrometry /
- in vitro diagnosis
-
表 1 猝灭缓冲液组成对在线酶切效率的影响
Table 1. Effect of quenching buffer composition on on-line digestion efficiency
变性剂 还原剂 肽段产量 GdnHCl
(mol/L)Urea
(mol/L)TCEP
(mol/L)0 0 0 0 1.6 0 0.1 0 3.2 0 0.1 0 0 4 0.1 66 表 2 PLGS参数
Table 2. PLGS parameter
项目 处理参数 Acquisition Type Electrospray MSe Lock Mass for Charge 1 556.2771 Low Energy Threshold 130 Search Type Electrospray MSe Peptide Tolerance 100 Fragment Tolerance 100 Primary Digest Reagent Non-specific -
[1] Kristian T, Alpert J S, Jaffe A S, et al. Third universal definition of myocardial infarction[J]. Circulation, 2012, 126(16): 2020-35. doi: 10.1161/CIR.0b013e31826e1058 [2] Christenson E, Christenson R H. Characteristics of cardiac troponin measurements[J]. Coronary Artery Disease, 2013, 24(8): 698-704. doi: 10.1097/MCA.0000000000000047 [3] Nordenskjold A M, Ahlstrom H, Eggers K M, et al. Short- and Long-term Individual Variation in Cardiac Troponin in Patients with Stable Coronary Artery Disease[J]. Clinical Chemistry, 2013, 59(2): 401-409. doi: 10.1373/clinchem.2012.191700 [4] Halim S A, Kristin N L, Magnus O E. Biomarkers in Cardiovascular Clinical Trials: Past, Present, Future[J]. Clinical Chemistry, 2012(1): 45-53. [5] Morrow D A, Cannon C P, Jesse R L, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical Characteristics and Utilization of Biochemical Markers in Acute Coronary Syndromes[J]. Circulation, 2007(4): e356-75. [6] Madsen L H, Christensen G, Lund T, et al. Time course of degradation of cardiac troponin I in patients with acute ST-elevation myocardial infarction: the ASSENT-2 troponin substudy[J]. Circulation Research, 2006, 99(10): 1141-1147. doi: 10.1161/01.RES.0000249531.23654.e1 [7] Bunk D M, Dalluge J J, Welch M J. Heterogeneity in human cardiac troponin I standards[J]. Analytical Biochemistry, 2000, 284(2): 191-200. doi: 10.1006/abio.2000.4710 [8] Panteghini M, Bunk D M, Christenson R H, et al. Standardization of troponin I measurements: an update[J]. Clinical Chemistry and Laboratory Medicine (CCLM), 2008, 46(11): 1501-1506. [9] Apple, Fred, S, et al. Cardiac Troponin Assays: Guide to Understanding Analytical Characteristics and Their Impact on Clinical Care[J]. Clinical Chemistry Journal of the American Association for Clinical Chemists, 2017, 63(1): 73-81. [10] Mauro P, Franca P, Yeo K J, et al. Evaluation of Imprecision for Cardiac Troponin Assays at Low-Range Concentrations[J]. Clinical Chemistry(2): 327-32. [11] Schneck N A, Phinney K W, Lee S B, et al. Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry[J]. Analytical & Bioanalytical Chemistry, 2018, 410: 2805-2813. [12] Bhavsar P K, Brand N J, Yacoub M H, et al. Isolation and characterization of the human cardiac troponin I gene (TNNI3)[J]. Genomics, 1996, 35(1): 11-23. doi: 10.1006/geno.1996.0317 [13] Tate J R, Bunk D M, Christenson R H, et al. Standardisation of cardiac troponin I measurement: past and present[J]. Pathology - Journal of the RCPA, 2010, 42(5): 402. [14] D Ntelios, Mpei E, Gousi E, et al. Are troponin assays occasionally deceiving us?[J]. American Journal of Emergency Medicine, 2013, 31(6): 997. e1-997. e2. [15] He H J, Lowenthal M S, Cole K D, et al. An immunoprecipitation coupled with fluorescent Western blot analysis for the characterization of a model secondary serum cardiac troponin I reference material[J]. Clinica Chimica Acta, 2011, 412(1-2): 107-111. doi: 10.1016/j.cca.2010.09.017 [16] Canalias F, S Camprubí, M Sánchez, et al. Metrological traceability of values for catalytic concentration of enzymes assigned to a calibration material[J]. Clinical Chemistry & Laboratory Medicine, 2006, 21(3): 709-339. [17] Bunk D M, Welch M J. Characterization of a New Certified Reference Material for Human Cardiac Troponin I[J]. Clinical Chemistry, 2006(2): 212-9. [18] Burgt Y, Cobbaert C M, Dalebout H, et al. Temperature-dependent instability of the cTnI subunit in NIST SRM2921 characterized by tryptic peptide mapping[J]. Journal of Chromatography B, 2012, 902(none): 147-150. [19] Tanja S, Aleksandra T, Sanna H, et al. Epitope Specificity and IgG Subclass Distribution of Autoantibodies to Cardiac Troponin[J]. Clinical Chemistry, 2013(3): 512-518. [20] Wijk X, Claassen S, Enea N S, et al. Cardiac troponin I is present in plasma of type 1 myocardial infarction patients and patients with troponin I elevations due to other etiologies as complex with little free I[J]. Clinical Biochemistry, 2019, 73: 35-43. doi: 10.1016/j.clinbiochem.2019.06.012 [21] Katrukha A G, Bereznikova A V, Filatov V L, et al. Degradation of cardiac troponin I: implication for reliable immunodetection[J]. Clinical Chemistry, 1998(12): 2433-2440. [22] Eric K, Terri A, Hasmik K, et al. Developing Multiplexed Assays for Troponin I and Interleukin-33 in Plasma by Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry[J]. Clinical Chemistry, 2009, 55(6): 1108-1107. doi: 10.1373/clinchem.2009.123935 [23] Sun, H, Ma, L, Wang, L, et al. Research advances in hydrogen-deuterium exchange mass spectrometry for protein epitope mapping [J]. Anal Bioanal Chem 2021, 413 (9), 2345-2359. [24] Redhair M, Clouser A F, Atkins W M. Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs[J]. Chemistry and Physics of Lipids, 2019, 220: 14-22. doi: 10.1016/j.chemphyslip.2019.02.007 [25] Sinz A. Cross-Linking/Mass Spectrometry for Studying Protein Structures and Protein-Protein Interactions: Where Are We Now and Where Should We Go from Here?[J]. Angew Chem Int Edit, 2018, 57(22): 6390-6396. doi: 10.1002/anie.201709559 [26] Huang R Y C, Kuhne M, Deshpande S, et al. Mapping binding epitopes of monoclonal antibodies targeting major histocompatibility complex class I chain-related A (MICA) with hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry[J]. Anal Bioanal Chem, 2020, 412(7): 1693-1700 doi: 10.1007/s00216-020-02409-x [27] Zhu S, Liuni P, Ettorre L, et al. Hydrogen-Deuterium Exchange Epitope Mapping Reveals Distinct Neutralizing Mechanisms for Two Monoclonal Antibodies against Diphtheria Toxin[J]. Biochemistry, 2019, 58(6): 646-656. doi: 10.1021/acs.biochem.8b01123 [28] Puchades C, Kukrer B, Diefenbach O, et al. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS[J]. Sci Rep, 2019, 9: 4735. doi: 10.1038/s41598-019-41179-0 [29] Lau A M C, Ahdash Z, Martens C, et al. Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry[J]. Bioinformatics, 2019, 35(17): 3171-3173. doi: 10.1093/bioinformatics/btz022 [30] Downard K M, Maleknia S D. Mass spectrometry in structural proteomics: The case for radical probe protein footprinting[J]. Trac-Trend Anal Chem, 2019, 110: 293-302. doi: 10.1016/j.trac.2018.11.016 [31] Zhang Q, Yang J, Bautista J, et al. Epitope Mapping by HDX-MS Elucidates the Surface Coverage of Antigens Associated with High Blocking Efficiency of Antibodies to Birch Pollen Allergen[J]. Anal Chem, 2018, 90(19): 11315-11323. doi: 10.1021/acs.analchem.8b01864 [32] Trabjerg E, Nazari Z E, Rand K D. Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions[J]. Trac-Trend Anal Chem, 2018, 106: 125-138. doi: 10.1016/j.trac.2018.06.008 [33] Kostyukevich Y, Acter T, Zherebker A, et al. Hydrogen/deuterium exchange in mass spectrometry[J]. Mass Spectrom Rev, 2018, 37(6): 811-853. doi: 10.1002/mas.21565 [34] Brown K A, Wilson D J. Bottom-up hydrogen deuterium exchange mass spectrometry: data analysis and interpretation[J]. Analyst, 2017, 142(16): 2874-2886. doi: 10.1039/C7AN00662D