Research on the Calibration Method of PM2.5/PM10 Particle Automatic Monitoring Instruments Based on Gravimetric Method
-
摘要: 为确保环境颗粒物PM2.5/PM10监测数据的准确可靠,针对重量法PM2.5/PM10颗粒物自动监测仪溯源方法进行了研究。通过对监测仪结构和工作原理的分析,确定了影响其测量准确度并能够体现此类仪器共性特征的参数和关键技术。介绍了采样单元、恒温恒湿模块、称重模块和滤膜除静电模块等关键模块的功能、参数以及其中影响仪器测量准确性的因素,研究了仪器的校准方法,提取了对应的计量性能参数,并且对计量性能参数的指标进行了规定,以市场占有率较高的监测仪为典型,通过大量试验验证了制定计量性能参数指标的合理性和测试方法的可行性,同时分析了校准过程的影响因素,给出了关键参数校准结果的不确定度评定方法,为进一步推动制定相应的技术规范,指导该类仪器校准数据的准确、有效奠定了基础。Abstract: To ensure the accuracy and reliability of PM2.5/PM10 monitoring data, this study investigates the traceability method for automatic PM2.5/PM10 particle monitoring instruments based on the gravimetric method. By analyzing the structure and working principles of these instruments, key parameters and technologies that influence measurement accuracy and are common to such instruments were identified. The study introduces the functions, parameters, and influencing factors of key modules such as the sampling unit, constant temperature and humidity module, weighing module, and filter membrane electrostatic removal module. Calibration methods were developed, and corresponding measurement performance parameters were extracted, along with specified indicator values. Through extensive experiments, using widely adopted monitoring instruments, the rationality of the performance parameter indicators and the feasibility of the testing methods were verified. Furthermore, the uncertainty evaluation method for calibration results was provided based on an analysis of the factors affecting the calibration process. This study lays the groundwork for the development of relevant technical standards and ensures the accuracy and validity of calibration data for these instruments.
-
表 1 恒温恒湿模块参数测试结果
Table 1. Test results of the constant temperature and humidity module parameters
仪器生产单位 型号 温度偏差
(℃)温度波动
(℃)温度均匀度
(℃)相对湿度
偏差(%)相对湿度
波动(%)相对湿度
均匀度(%)康姆德润达(无锡)测量技术有限公司 AWS-1R(W90119) −1.2 0.2 0.2 −1.6 1.1 1.1 AWS-1R(W91014) 0.1 0.1 0.6 2.6 0.8 2.0 重庆国科诚远环境科技有限公司 CEWS-AUTO 0.3 0.2 0.2 −1.0 0.2 0.6 青岛容广电子技术有限公司 RG-AWS30 0.1 0.1 0.2 0.4 0.3 0.2 丹东百特仪器有限公司 BTPM-AWS1-80 −0.5 0.2 0.2 −1.1 0.5 0.5 BTPM-AS1 −0.8 0.3 0.3 −1.6 0.9 1.4 表 2 称重模块参数测试结果 /mg
Table 2. Test results of the weighing module parameters (mg)
仪器生产单位 型号 示值误差 重复性 系统漂移 d=0.01 d=0.001 d=0.01 d=0.001 d=0.01 d=0.001 康姆德润达(无锡)测量技术有限公司 AWS-1R(W90119) — 0.006 — 0.007 — 0.008 AWS-1R(W91014) — 0.003 — 0.006 — 0.002 重庆国科诚远环境科技有限公司 CEWS-AUTO 0.02 — 0.01 — 0.02 — 青岛容广电子技术有限公司 RG-AWS30 — 0.004 — 0.001 — 0.002 丹东百特仪器有限公司 BTPM-AWS1-80 0.02 — 0.02 — 0.02 — BTPM-AS1 0.04 — 0.04 — 0.03 — -
[1] 甘肃省环境监测中心站. 环境空气 颗粒物中水溶性阳离子的测定 离子色谱法: HJ 800-2016[S]. 北京: 中国环境科学出版社, 2016. [2] 国家环境保护局科技标准司. 环境空气质量标准: GB 3095-2012[S]. 北京: 中国标准出版社, 1996. [3] 国务院. 大气污染防治行动计划[Z]. 2013-9-10. [4] 张文阁, 刘巍, 刘俊杰, 等. 环境空气颗粒物质量浓度计量溯源体系的建立[J]. 计量科学与技术, 2022, 66(10): 10-15. [5] 刘俊杰, 张文阁. 可吸入颗粒物采样器准确性计量检测方法的设计及研究[J]. 中国粉体技术, 2006, 12(5): 5-8. [6] 郭亮, 邵鹏威, 马志伟, 等. 光散射法和β射线法颗粒物测量仪适用性研究[J]. 中国计量, 2021(2): 81-85. [7] 余来华. 基于单颗粒光散射法颗粒物质量浓度监测仪的研制及校准研究[D]. 太原: 太原理工大学, 2022. [8] 张文阁, 刘巍, 陈仲辉, 等. PM2.5重量法标准装置研制及溯源性研究[J]. 计量技术, 2015(1): 3-7. [9] 刘巍, 王婷, 邹亚雄, 等. 环境空气采样用滤膜截留效率测试方法研究[J]. 计量科学与技术, 2024, 68(1): 33-36,52. [10] 王凯, 张霞, 苏瑾. 地铁站中PM2.5和PM10光散射法与滤膜称重法比对[J]. 实用预防医学, 2021, 28(12): 1539-1542. [11] 陈珂, 孙文, 保善磊. 重量法测定环境空气总悬浮颗粒物准确度的实验室内部影响因素分析[J]. 青海环境, 2022, 32(3): 162-164. [12] 国家市场监督管理总局. 环境空气颗粒物质量浓度测定 重量法: GB/T 39193-2020[S]. 北京: 中国标准出版社, 1996. [13] 李想, 许潇. 大气颗粒物水溶性离子计量技术研究概述[J]. 计量科学与技术, 2022, 66(6): 31-37. [14] 王婷, 景军, 张明, 等. 大气气溶胶水溶性自动监测仪校准装置初探[J]. 计量科学与技术, 2024, 68(1): 63-69. [15] US Environmental Protection Agency. Part 53-Ambient Air Mmonitoring Reference and Equivalent Methods [EB/OL] [2021-10-25]. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-53. [16] European Committee for Standardization. Ambient air – Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter: EN 12341: 2014 [S]. Brussels: European Committee for Standardization, 2014. [17] 中国环境监测总站. 环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范: HJ 656-2013[S]. 北京: 中国环境科学出版社, 2013. [18] 中日友好环境保护中心, 国家环境分析测试中心. 环境空气 PM10和PM2.5的测定 重量法: HJ 618-2011[S]. 北京: 中国环境科学出版社, 2011. [19] 中国环境监测总站. 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法: HJ 93-2013[S]. 北京: 中国环境科学出版社, 2013. [20] 杨琪琪, 杨禹哲. 如何保证环境颗粒物PM2.5手工监测法(重量法)中称量的准确性[J]. 中国计量, 2018(12): 87-88. [21] 环境保护部. 环境空气质量手工监测技术规范: HJ194-2017[S]. 北京: 中国环境科学出版社, 2017. [22] 王龙, 刘源, 方维凯, 等. PM2.5滤膜称重法技术问题分析[J]. 计量与测试技术, 2020, 47(10): 56-58. [23] 李金莹, 樊晓翠, 焉峰, 等. 固定污染源废气低浓度颗粒物的测定中β射线法与重量法对比分析[J]. 分析仪器, 2021(3): 119-121. [24] 胡雪花, 郝敏钗, 王丽佳, 等. 气体中颗粒物质量浓度测量方法的比较研究[J]. 工业计量, 2023, 33(4): 18-22,26. [25] 张文阁, 刘巍. 环境空气颗粒物测量中采样滤膜的应用[J]. 中国计量, 2020(6): 86-88. [26] 国家市场监督管理总局. PM2.5质量浓度测量仪校准规范: JJF1659-2017[S]. 北京: 中国质检出版社, 2019. [27] 国家市场监督管理总局. 环境试验设备温度、湿度参数校准规范: JJF1101-2019[S]. 北京: 中国质检出版社, 2019. [28] 国家市场监督管理总局. 电子天平校准规范: JJF1847-2020[S]. 北京: 中国质检出版社, 2020. [29] 楚宝临, 郑倩倩, 姚雅伟, 等. 大气颗粒物手工比对监测体系滤膜称量质控技术探讨[J]. 中国环境监测, 2017, 33(5): 132-138. [30] 沈立人. 电子衡器静电环境下多个案例分析[J]. 衡器, 2023, 52(10): 5-8,25. [31] 裘新力. 高精度电子天平的精确测量[J]. 中国计量, 2019(5): 105-106.