留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全氟和多氟烷基物质标准物质的应用与研制进展

朱欣 韦棋 苏福海

朱欣,韦棋,苏福海. 全氟和多氟烷基物质标准物质的应用与研制进展[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0181
引用本文: 朱欣,韦棋,苏福海. 全氟和多氟烷基物质标准物质的应用与研制进展[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0181
ZHU Xin, WEI Qi, SU Fuhai. Utilization and Advancement in Reference Materials of Per- and Polyfluoroalkyl Substances[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0181
Citation: ZHU Xin, WEI Qi, SU Fuhai. Utilization and Advancement in Reference Materials of Per- and Polyfluoroalkyl Substances[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0181

全氟和多氟烷基物质标准物质的应用与研制进展

doi: 10.12338/j.issn.2096-9015.2024.0181
基金项目: NQI专项《饮用水全流程新污染物计量技术研发与标准物质研制》(2022YFF0609101)。
详细信息
    作者简介:

    朱欣(2001-),中国计量科学研究院硕士研究生,研究方向:有机化学计量,邮箱:jadezhlb22@163.com

    通讯作者:

    苏福海(1976- ),中国计量科学研究院副研究员,研究方向:有机分析,邮箱:sufh@nim.ac.cn

Utilization and Advancement in Reference Materials of Per- and Polyfluoroalkyl Substances

  • 摘要: 全氟和多氟烷基类物质(PFAS)是一类具有难降解性、生物累积性和长距离迁移性的持久性有机污染物,2023年开始,中国、美国和欧盟均已采取了一系列有力措施对其进行监管。标准物质作为PFAS监管有效性的重要组成,需要得到充分重视。目前我国PFAS标准物质体系存在一定不足,无论是纯物质和标准溶液,还是同位素标记标准物质和基体标准物质都需要进一步丰富和研制。综述了近5年来一些PFAS标准物质在环境分析中的应用,为环境分析和监测的工作者提供一些标准物质新颖的用法,并为我国PFAS标准物质体系建设提供了建议。
  • 表  1  一些含PFAS的基体标准物质作基体匹配材料的应用实例

    Table  1.   Some Applications of Matrix Reference Substances Containing PFAS as Matrix-Matched Materials

    代号/Code 名称/Name 代表基体/Represented Matrix 参考文献/Reference
    SRM 1950 Metabolites in Frozen Human Plasma 血浆 [35]
    SRM 971a Hormones in Frozen Human Serum 血清
    BCR 461 Clay (F) 土壤 [36]
    SRM 2585 Organic Contaminants in House Dust 土壤
    SRM 2781 Domestic Sludge 土壤
    IRMM 427 Pike-perch
    (PFASs in fish tissue)
    鱼肉 [24]
    下载: 导出CSV

    表  2  中国的全氟及多氟烷基类物质PFAS标准物质

    Table  2.   PFAS Reference Materials in China

    名称/Name 编号/Code 分析物/Analytes 浓度水平/
    Concentration Level
    甲醇中全氟丁基磺酸钾溶液标准物质GBW(E)084741全氟丁基磺酸50.5±2 µg/mL
    甲醇中全氟丁基磺酸钾溶液标准物质GBW(E)084742全氟丁基磺酸10.5±4 µg/mL
    鱼肉粉中全氟辛基磺酸盐成分分析标准物质GBW(E)100739PFSAs:全氟辛基磺酸盐总和1.40±0.17 µg/kg
    鱼肉粉中9种全氟化合物成分分析标准物质GBW(E)100740PFCAs:全氟辛酸、全氟壬酸、全氟癸酸、全氟十一酸、全氟十二酸、全氟十四酸(C = 8-12, 14)
    PFSAs:全氟丁基磺酸盐、全氟己基磺酸盐、全氟辛基磺酸盐(C = 4, 6, 8)
    3.45 - 6.41 µg/kg
    鱼肉粉中全氟烷基化合物成分分析标准物质GBW(E)100844PFCAs:全氟辛酸、全氟壬酸、全氟癸酸、全氟十一酸、全氟十二酸(C = 8-12)
    PFSAs:全氟辛基磺酸盐总和
    4.11 - 6.04 µg/kg
    鱼肉粉中全氟烷基化合物成分分析标准物质GBW(E)100845PFCAs:全氟辛酸、全氟壬酸、全氟癸酸、全氟十一酸、全氟十二酸(C = 8-12)
    PFSAs:全氟辛基磺酸盐总和
    24.6 - 29.8 µg/kg
    1. PFCA:全氟烷基羧酸类物质;PFSA:全氟烷基磺酸类物质(以磺酸根计)。
    2. C = :指烷基链上碳的数目。
    下载: 导出CSV

    表  3  NIST在售的全氟及多氟烷基类物质分析用标准物质

    Table  3.   Reference substances for PFAS sold by NIST

    编号/Code名称/ Description分析物/Analytes
    浓度水平/Concentration Level
    SRM 1936Great Lakes SedimentPFOS (C = 8)µg/kg
    SRM 1947Lake Michigan Fish TissuePFCA:C = 9, 10, 11, 13
    PFSA:C = 8
    µg/kg
    SRM 1950Metabolites in Frozen Human PlasmaPFCA:C = 8, 9, 10, 11
    PFSA:C = 6, 8
    µg/kg
    SRM 1957Organic Contaminants in Non-Fortified Human Serum (Freeze-Dried)PFCA:C = 7, 8, 9, 10, 11
    PFSA:C = 6, 8
    µg/kg
    SRM 1958Organic Contaminants in Fortified Human Serum (Freeze-Dried)PFCA:C = 8, 9
    PFSA:C = 6, 8
    µg/kg
    SRM 2585Organic Contaminants in House DustPFCA:C = 4, 6, 7, 9, 12, 13
    PFSA:C = 6, 8
    µg/kg
    SRM 2586Trace Elements in Soil Containing Lead from Paint (Nominal 500 mg/kg Lead)PFSA:C = 8µg/kg
    SRM 2781Domestic SludgePFCA:C = 6, 7, 8
    PFSA:C = 6, 8
    其他:PFOSA1
    µg/kg
    SRM 8446Perfluorinated Carboxylic Acids and Perfluorooctane Sulfonamide in MethanolPFCA:C = 4-14
    其他:PFOSA
    mg/kg
    SRM 8447Perfluorinated Sulfonic Acids in MethanolPFSA:C = 4, 6, 8mg/kg
    SRM 8690PFAS in Aqueous Film-Forming Foams (AFFF) Formulation IPFCA:C = 4, 6, 7, 8
    PFSA:C = 3-7
    其他:PFOSA, PFHxSA2
    mg/kg
    SRM 8691PFAS in Aqueous Film-Forming Foams (AFFF) Formulation IIPFCA:C = 4, 6, 8
    其他:PFOSA
    µg/kg
    SRM 8692PFAS in Aqueous Film-Forming Foams (AFFF) Formulation IIIPFCA:C = 4, 6
    其他:PFOSA
    µg/kg
    SRM 8693PFAS in Aqueous Film-Forming Foams (AFFF) Formulation IVPFCA:C = 4, 6
    其他:PFOSA
    mg/kg
    1. PFOSA:全氟辛烷磺胺酸
    2. PFHxSA:全氟己烷磺胺酸
    下载: 导出CSV

    表  4  LGC出售的部分全氟及多氟烷基类物质分析用标准物质

    Table  4.   Some Reference substances for PFAS sold by LGC

    编号/Code名称/ Description分析物数目
    /Count of Analytes
    浓度水平
    / Concentration Level
    DRE-A30000051MWEU Drinking Water Directive PFAS Mixture 10 μg/mL in Methanol:Water20µg/mL
    DRE-A50000751MWEPA Method 533 PFAS Mixture 10 μg/mL in Methanol:Water22µg/mL
    DRE-A50000754MWUCMR5 PFAS Mixture 10 μg/mL in Methanol:Water29µg/mL
    DRE-A50000752MWEPA Method 8327 PFAS Mixture 10 μg/mL in Methanol:Water22µg/mL
    DRE-GS09000218MWPFAA Mixture 218 100 μg/mL in Methanol:Water 96%:4%11µg/mL
    DRE-A50000647MWPFASiMix 100 μg/mL in Methanol:Water (96:4)27µg/mL
    DRE-A50000152MWEPA Method 537.1 PFAS Mixture 152 100 μg/mL in Methanol:Water (96:4)18µg/mL
    IRMM-428Water (PFAS in water)7ng/L
    下载: 导出CSV
  • [1] EVICH M G, DAVIS M J B, MCCORD J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580): 9065. doi: 10.1126/science.abg9065
    [2] US EPA O. Per- and Polyfluoroalkyl Substances (PFAS)[EB/OL]. (2021-11-16)[2024-05-13]. https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas.
    [3] JIAN J M, GUO Y, ZENG L, et al. Global distribution of perfluorochemicals (PFCs) in potential human exposure source–A review[J]. Environment International, 2017, 108: 51-62. doi: 10.1016/j.envint.2017.07.024
    [4] KURWADKAR S, DANE J, KANEL S R, et al. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution[J]. Science of The Total Environment, 2022, 809: 151003. doi: 10.1016/j.scitotenv.2021.151003
    [5] WANG T, WANG P, MENG J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China[J]. Chemosphere, 2015, 129: 87-99. doi: 10.1016/j.chemosphere.2014.09.021
    [6] TARAPORE P, OUYANG B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility?[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3794. doi: 10.3390/ijerph18073794
    [7] PANIERI E, BARALIC K, DJUKIC-COSIC D, et al. PFAS Molecules: A Major Concern for the Human Health and the Environment[J]. Toxics, 2022, 10(2): 44. doi: 10.3390/toxics10020044
    [8] OBSEKOV V, KAHN L G, TRASANDE L. Leveraging Systematic Reviews to Explore Disease Burden and Costs of Per- and Polyfluoroalkyl Substance Exposures in the United States[J]. Exposure and Health, 2023, 15(2): 373-394. doi: 10.1007/s12403-022-00496-y
    [9] KIRK A B, MICHELSEN-CORREA S, ROSEN C, et al. PFAS and Potential Adverse Effects on Bone and Adipose Tissue Through Interactions With PPARγ[J]. ENDOCRINOLOGY, 2021, 162(12).
    [10] COPERCHINI F, GRECO A, ROTONDI M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects?[J]. Journal of Endocrinological Investigation, 2024, 47: 1863-1879. doi: 10.1007/s40618-024-02339-w
    [11] BRUNN H, ARNOLD G, KÖRNER W, et al. PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites[J]. Environmental Sciences Europe, 2023, 35(1): 20. doi: 10.1186/s12302-023-00721-8
    [12] BAI X, SON Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA[J]. Science of The Total Environment, 2021, 751: 141622. doi: 10.1016/j.scitotenv.2020.141622
    [13] CHEN C E, YANG Y Y, ZHAO J L, et al. Legacy and alternative per- and polyfluoroalkyl substances (PFASs) in the West River and North River, south China: Occurrence, fate, spatio-temporal variations and potential sources[J]. Chemosphere, 2021, 283: 131301. doi: 10.1016/j.chemosphere.2021.131301
    [14] LIU L, QU Y, HUANG J, et al. Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: risk assessment and geographical distribution[J]. Environmental Sciences Europe, 2021, 33(1): 6. doi: 10.1186/s12302-020-00425-3
    [15] 卢晓华, 薄梦, 吴雪, 等. 标准物质领域发展现状及趋势[J]. 化学试剂, 2022, 44(10): 1403-1410.
    [16] 黄林艳, 刘海萍, 赵亚娴, 等. 环境基质有机标准样品研究进展[J]. 环境化学, 2017, 36(10): 2115-2125. doi: 10.7524/j.issn.0254-6108.2017050301
    [17] 田洪海, 邢小茹, 宁远英, 等. 我国环境标准样品发展及应用[J]. 中国环境监测, 2019, 35(5): 12-17.
    [18] 国家质量监督检验检疫总局. 通用计量术语及定义: JJF 1001-2011[S]. 北京: 中国标准出版社, 2011.
    [19] 国家市场监督管理总局. 标准物质计量溯源性的建立、评估与表达计量技术规范: JJF 1854-2020[S]. 2020.
    [20] WISE S A. What if using certified reference materials (CRMs) was a requirement to publish in analytical/bioanalytical chemistry journals?[J]. Analytical and Bioanalytical Chemistry, 2022, 414(24): 7015-7022. doi: 10.1007/s00216-022-04163-8
    [21] 国家市场监督管理总局. 标准物质的定值及均匀性、稳定性评估: JJF 1343-2022[S]. 北京: 中国标准出版社, 2022.
    [22] 国家市场监督管理总局. 纯度标准物质定值计量技术规范 有机物纯度标准物质: JJF 1855-2020[S]. 北京: 中国标准出版社, 2020.
    [23] RICCI M, LAVA R, KOLEVA B. Matrix Certified Reference Materials for environmental monitoring under the EU Water Framework Directive: An update[J]. TrAC Trends in Analytical Chemistry, 2016, 76: 194-202. doi: 10.1016/j.trac.2015.11.002
    [24] NAVARATHNA C M, PRAY H, RODRIGO P M, et al. Microplastics and Per- and Polyfluoroalkyl Substances (PFAS) Analysis in Sea Turtles and Bottlenose Dolphins along Mississippi’s Coast[J]. Analytica, 2023, 4(1): 12-26. doi: 10.3390/analytica4010003
    [25] SKEDUNG L, SAVVIDOU E, SCHELLENBERGER S, et al. Identification and quantification of fluorinated polymers in consumer products by combustion ion chromatography and pyrolysis-gas chromatography-mass spectrometry[J]. Environmental Science: Processes & Impacts, 2024, 26(1): 82-93.
    [26] KÄRRMAN A, YEUNG L W Y, SPAAN K M, et al. Can determination of extractable organofluorine (EOF) be standardized? First interlaboratory comparisons of EOF and fluorine mass balance in sludge and water matrices[J]. Environmental Science: Processes & Impacts, 2021, 23(10): 1458-1465.
    [27] GETZINGER G J, FERGUSON P L. High-Throughput Trace-Level Suspect Screening for Per- and Polyfluoroalkyl Substances in Environmental Waters by Peak-Focusing Online Solid Phase Extraction and High-Resolution Mass Spectrometry[J]. ACS ES& T Water, 2021, 1(5): 1240-1251.
    [28] SALIHOVIC S, NYSTRÖM N, MATHISEN C B W, et al. Identification and validation of a blood- based diagnostic lipidomic signature of pediatric inflammatory bowel disease[J]. Nature Communications, 2024, 15(1): 4567. doi: 10.1038/s41467-024-48763-7
    [29] LIND P M, LIND L, SALIHOVIC S, et al. Serum levels of perfluoroalkyl substances (PFAS) and body composition – A cross-sectional study in a middle-aged population[J]. Environmental Research, 2022, 209: 112677. doi: 10.1016/j.envres.2022.112677
    [30] SALIHOVIC S, KÄRRMAN A, LINDSTRÖM G, et al. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1305: 164-170. doi: 10.1016/j.chroma.2013.07.026
    [31] STUBLESKI J, KUKUCKA P, SALIHOVIC S, et al. A method for analysis of marker persistent organic pollutants in low-volume plasma and serum samples using 96-well plate solid phase extraction[J]. Journal of Chromatography A, 2018, 1546: 18-27. doi: 10.1016/j.chroma.2018.02.057
    [32] SALIHOVIĆ S, DICKENS A M, SCHOULTZ I, et al. Simultaneous determination of perfluoroalkyl substances and bile acids in human serum using ultra-high-performance liquid chromatography–tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2020, 412(10): 2251-2259. doi: 10.1007/s00216-019-02263-6
    [33] PALÁT J, KUKUČKA P, CODLING G P, et al. Application of 96-well plate SPE method for analysis of persistent organic pollutants in low volume blood serum samples[J]. Chemosphere, 2022, 287: 132300. doi: 10.1016/j.chemosphere.2021.132300
    [34] RODOWA A E, REINER J L. Utilization of a NIST SRM: a case study for per- and polyfluoroalkyl substances in NIST SRM 1957 organic contaminants in non-fortified human serum[J]. Analytical and Bioanalytical Chemistry, 2021, 413(9): 2295-2301. doi: 10.1007/s00216-021-03241-7
    [35] DA SILVA B F, AHMADIRESKETY A, ARISTIZABAL-HENAO J J, et al. A rapid and simple method to quantify per- and polyfluoroalkyl substances (PFAS) in plasma and serum using 96-well plates[J]. MethodsX, 2020, 7: 101111. doi: 10.1016/j.mex.2020.101111
    [36] SPAAN K M, YUAN B, PLASSMANN M M, et al. Characterizing the Organohalogen Iceberg: Extractable, Multihalogen Mass Balance Determination in Municipal Wastewater Treatment Plant Sludge[J]. Environmental Science & Technology, 2023, 57(25): 9309-9320.
    [37] SCHULZ K, SILVA M R, KLAPER R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: A review of recent literature[J]. Science of The Total Environment, 2020, 733: 139186. doi: 10.1016/j.scitotenv.2020.139186
    [38] SAN ROMÁN A, ABILLEIRA E, IRIZAR A, et al. Optimization for the analysis of 42 per- and polyfluorinated substances in human plasma: A high-throughput method for epidemiological studies[J]. Journal of Chromatography A, 2023, 1712: 464481. doi: 10.1016/j.chroma.2023.464481
    [39] FIEDLER H, SADIA M, BAABISH A, et al. Perfluoroalkane substances in national samples from global monitoring plan projects (2017–2019)[J]. Chemosphere, 2022, 307: 136038. doi: 10.1016/j.chemosphere.2022.136038
    [40] SADIA M, YEUNG L W Y, FIEDLER H. Trace level analyses of selected perfluoroalkyl acids in food: Method development and data generation[J]. Environmental Pollution, 2020, 263: 113721. doi: 10.1016/j.envpol.2019.113721
    [41] VAN DER VEEN I, FIEDLER H, DE BOER J. Assessment of the per- and polyfluoroalkyl substances analysis under the Stockholm Convention – 2018/2019[J]. Chemosphere, 2023, 313: 137549. doi: 10.1016/j.chemosphere.2022.137549
    [42] FIEDLER H, SADIA M, KRAUSS T, et al. Perfluoroalkane acids in human milk under the global monitoring plan of the Stockholm Convention on Persistent Organic Pollutants (2008–2019)[J]. Frontiers of Environmental Science & Engineering, 2022, 16(10): 132.
    [43] 王振华. 环境监测分析中标准物质的选择及应用[J]. 化学分析计量, 2022, 31(4): 93-97. doi: 10.3969/j.issn.1008-6145.2022.04.019
    [44] 张恣意, 龚艳, 曹文成, 等. 我国主要食品中全氟烷基化合物的污染现状及膳食暴露评估研究进展[J]. 食品工业科技, 2021, 42(8): 410-416.
    [45] ZHOU J, YAN J, QI X, et al. Development of a new matrix-certified reference material for accurate measurement of PFOA and PFOS in oyster meat powder[J]. Microchemical Journal, 2023, 190: 108673. doi: 10.1016/j.microc.2023.108673
    [46] 齐鑫. 牡蛎中PFOA和PFOS高准确度定值方法研究及基体标准物质研制[D]. 北京: 中国农业科学院, 2021.
    [47] Shop NIST | E-Commerce Store[EB/OL]. [2024-05-25]. https://shop.nist.gov/ccrz__ProductList?categoryId=a0l3d0000005KqIAAU&cclcl=en_US.
    [48] Perfluoroalkylated Substance (PFAS) Research Chemicals & Reference Materials | LGC Standards[EB/OL]. [2024-05-25]. https://www.lgcstandards.com/GB/en/Environmental-Reference-Materials/Perfluoroalkylated-Substance-PFAS-Research-Chemicals-Reference-Materials-/cat/285186.
  • 加载中
计量
  • 文章访问数:  60
  • HTML全文浏览量:  73
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 录用日期:  2024-07-26
  • 修回日期:  2024-07-04
  • 网络出版日期:  2024-09-04

目录

    /

    返回文章
    返回