Utilization and Advancement in Reference Materials of Per- and Polyfluoroalkyl Substances
-
摘要: 全氟和多氟烷基类物质(PFAS)是一类具有难降解性、生物累积性和长距离迁移性的持久性有机污染物,2023年开始,中国、美国和欧盟均已采取了一系列有力措施对其进行监管。标准物质作为PFAS监管有效性的重要组成,需要得到充分重视。目前我国PFAS标准物质体系存在一定不足,无论是纯物质和标准溶液,还是同位素标记标准物质和基体标准物质都需要进一步丰富和研制。综述了近5年来一些PFAS标准物质在环境分析中的应用,为环境分析和监测的工作者提供一些标准物质新颖的用法,并为我国PFAS标准物质体系建设提供了建议。
-
关键词:
- 计量学 /
- 全氟和多氟烷基物质(PFAS) /
- 标准物质 /
- 基体标准物质
Abstract: Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants, which are difficult to degrade, bioaccumulative, and have long-range transport properties. Therefore, China, America and the EU have taken a series of legal measures to regulate PFAS since 2023. Reference materials play an important role PFAS regulation and should be given sufficient attention. Currently, the PFAS reference materials system in China is deficient, because not only pure substances and standard solutions, but also isotopically labeled reference substances materials and matrix reference materials need to be further enriched and developed. In addition, this paper reviews the application of some PFAS reference materials in environmental analysis in the past five years, providing underutilized uses for reference materials for environmental analysis and monitoring work. Finally, some suggestions are provided for the construction of the PFAS reference materials system in China. -
表 1 一些含PFAS的基体标准物质作基体匹配材料的应用实例
Table 1. Some Applications of Matrix Reference Substances Containing PFAS as Matrix-Matched Materials
代号/Code 名称/Name 代表基体/Represented Matrix 参考文献/Reference SRM 1950 Metabolites in Frozen Human Plasma 血浆 [35] SRM 971a Hormones in Frozen Human Serum 血清 BCR 461 Clay (F) 土壤 [36] SRM 2585 Organic Contaminants in House Dust 土壤 SRM 2781 Domestic Sludge 土壤 IRMM 427 Pike-perch
(PFASs in fish tissue)鱼肉 [24] 表 2 中国的全氟及多氟烷基类物质PFAS标准物质
Table 2. PFAS Reference Materials in China
名称/Name 编号/Code 分析物/Analytes 浓度水平/
Concentration Level甲醇中全氟丁基磺酸钾溶液标准物质 GBW(E)084741 全氟丁基磺酸 50.5±2 µg/mL 甲醇中全氟丁基磺酸钾溶液标准物质 GBW(E)084742 全氟丁基磺酸 10.5±4 µg/mL 鱼肉粉中全氟辛基磺酸盐成分分析标准物质 GBW(E)100739 PFSAs:全氟辛基磺酸盐总和 1.40±0.17 µg/kg 鱼肉粉中9种全氟化合物成分分析标准物质 GBW(E)100740 PFCAs:全氟辛酸、全氟壬酸、全氟癸酸、全氟十一酸、全氟十二酸、全氟十四酸(C = 8-12, 14)
PFSAs:全氟丁基磺酸盐、全氟己基磺酸盐、全氟辛基磺酸盐(C = 4, 6, 8)3.45 - 6.41 µg/kg 鱼肉粉中全氟烷基化合物成分分析标准物质 GBW(E)100844 PFCAs:全氟辛酸、全氟壬酸、全氟癸酸、全氟十一酸、全氟十二酸(C = 8-12)
PFSAs:全氟辛基磺酸盐总和4.11 - 6.04 µg/kg 鱼肉粉中全氟烷基化合物成分分析标准物质 GBW(E)100845 PFCAs:全氟辛酸、全氟壬酸、全氟癸酸、全氟十一酸、全氟十二酸(C = 8-12)
PFSAs:全氟辛基磺酸盐总和24.6 - 29.8 µg/kg 1. PFCA:全氟烷基羧酸类物质;PFSA:全氟烷基磺酸类物质(以磺酸根计)。
2. C = :指烷基链上碳的数目。表 3 NIST在售的全氟及多氟烷基类物质分析用标准物质
Table 3. Reference substances for PFAS sold by NIST
编号/Code 名称/ Description 分析物/Analytes 浓度水平/Concentration Level SRM 1936 Great Lakes Sediment PFOS (C = 8) µg/kg SRM 1947 Lake Michigan Fish Tissue PFCA:C = 9, 10, 11, 13
PFSA:C = 8µg/kg SRM 1950 Metabolites in Frozen Human Plasma PFCA:C = 8, 9, 10, 11
PFSA:C = 6, 8µg/kg SRM 1957 Organic Contaminants in Non-Fortified Human Serum (Freeze-Dried) PFCA:C = 7, 8, 9, 10, 11
PFSA:C = 6, 8µg/kg SRM 1958 Organic Contaminants in Fortified Human Serum (Freeze-Dried) PFCA:C = 8, 9
PFSA:C = 6, 8µg/kg SRM 2585 Organic Contaminants in House Dust PFCA:C = 4, 6, 7, 9, 12, 13
PFSA:C = 6, 8µg/kg SRM 2586 Trace Elements in Soil Containing Lead from Paint (Nominal 500 mg/kg Lead) PFSA:C = 8 µg/kg SRM 2781 Domestic Sludge PFCA:C = 6, 7, 8
PFSA:C = 6, 8
其他:PFOSA1µg/kg SRM 8446 Perfluorinated Carboxylic Acids and Perfluorooctane Sulfonamide in Methanol PFCA:C = 4-14
其他:PFOSAmg/kg SRM 8447 Perfluorinated Sulfonic Acids in Methanol PFSA:C = 4, 6, 8 mg/kg SRM 8690 PFAS in Aqueous Film-Forming Foams (AFFF) Formulation I PFCA:C = 4, 6, 7, 8
PFSA:C = 3-7
其他:PFOSA, PFHxSA2mg/kg SRM 8691 PFAS in Aqueous Film-Forming Foams (AFFF) Formulation II PFCA:C = 4, 6, 8
其他:PFOSAµg/kg SRM 8692 PFAS in Aqueous Film-Forming Foams (AFFF) Formulation III PFCA:C = 4, 6
其他:PFOSAµg/kg SRM 8693 PFAS in Aqueous Film-Forming Foams (AFFF) Formulation IV PFCA:C = 4, 6
其他:PFOSAmg/kg 1. PFOSA:全氟辛烷磺胺酸
2. PFHxSA:全氟己烷磺胺酸表 4 LGC出售的部分全氟及多氟烷基类物质分析用标准物质
Table 4. Some Reference substances for PFAS sold by LGC
编号/Code 名称/ Description 分析物数目
/Count of Analytes浓度水平
/ Concentration LevelDRE-A30000051MW EU Drinking Water Directive PFAS Mixture 10 μg/mL in Methanol:Water 20 µg/mL DRE-A50000751MW EPA Method 533 PFAS Mixture 10 μg/mL in Methanol:Water 22 µg/mL DRE-A50000754MW UCMR5 PFAS Mixture 10 μg/mL in Methanol:Water 29 µg/mL DRE-A50000752MW EPA Method 8327 PFAS Mixture 10 μg/mL in Methanol:Water22 µg/mL DRE-GS09000218MW PFAA Mixture 218 100 μg/mL in Methanol:Water 96%:4% 11 µg/mL DRE-A50000647MW PFASiMix 100 μg/mL in Methanol:Water (96:4) 27 µg/mL DRE-A50000152MW EPA Method 537.1 PFAS Mixture 152 100 μg/mL in Methanol:Water (96:4) 18 µg/mL IRMM-428 Water (PFAS in water) 7 ng/L -
[1] EVICH M G, DAVIS M J B, MCCORD J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580): 9065. doi: 10.1126/science.abg9065 [2] US EPA O. Per- and Polyfluoroalkyl Substances (PFAS)[EB/OL]. (2021-11-16)[2024-05-13]. https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas. [3] JIAN J M, GUO Y, ZENG L, et al. Global distribution of perfluorochemicals (PFCs) in potential human exposure source–A review[J]. Environment International, 2017, 108: 51-62. doi: 10.1016/j.envint.2017.07.024 [4] KURWADKAR S, DANE J, KANEL S R, et al. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution[J]. Science of The Total Environment, 2022, 809: 151003. doi: 10.1016/j.scitotenv.2021.151003 [5] WANG T, WANG P, MENG J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China[J]. Chemosphere, 2015, 129: 87-99. doi: 10.1016/j.chemosphere.2014.09.021 [6] TARAPORE P, OUYANG B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility?[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3794. doi: 10.3390/ijerph18073794 [7] PANIERI E, BARALIC K, DJUKIC-COSIC D, et al. PFAS Molecules: A Major Concern for the Human Health and the Environment[J]. Toxics, 2022, 10(2): 44. doi: 10.3390/toxics10020044 [8] OBSEKOV V, KAHN L G, TRASANDE L. Leveraging Systematic Reviews to Explore Disease Burden and Costs of Per- and Polyfluoroalkyl Substance Exposures in the United States[J]. Exposure and Health, 2023, 15(2): 373-394. doi: 10.1007/s12403-022-00496-y [9] KIRK A B, MICHELSEN-CORREA S, ROSEN C, et al. PFAS and Potential Adverse Effects on Bone and Adipose Tissue Through Interactions With PPARγ[J]. ENDOCRINOLOGY, 2021, 162(12). [10] COPERCHINI F, GRECO A, ROTONDI M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects?[J]. Journal of Endocrinological Investigation, 2024, 47: 1863-1879. doi: 10.1007/s40618-024-02339-w [11] BRUNN H, ARNOLD G, KÖRNER W, et al. PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites[J]. Environmental Sciences Europe, 2023, 35(1): 20. doi: 10.1186/s12302-023-00721-8 [12] BAI X, SON Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA[J]. Science of The Total Environment, 2021, 751: 141622. doi: 10.1016/j.scitotenv.2020.141622 [13] CHEN C E, YANG Y Y, ZHAO J L, et al. Legacy and alternative per- and polyfluoroalkyl substances (PFASs) in the West River and North River, south China: Occurrence, fate, spatio-temporal variations and potential sources[J]. Chemosphere, 2021, 283: 131301. doi: 10.1016/j.chemosphere.2021.131301 [14] LIU L, QU Y, HUANG J, et al. Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: risk assessment and geographical distribution[J]. Environmental Sciences Europe, 2021, 33(1): 6. doi: 10.1186/s12302-020-00425-3 [15] 卢晓华, 薄梦, 吴雪, 等. 标准物质领域发展现状及趋势[J]. 化学试剂, 2022, 44(10): 1403-1410. [16] 黄林艳, 刘海萍, 赵亚娴, 等. 环境基质有机标准样品研究进展[J]. 环境化学, 2017, 36(10): 2115-2125. doi: 10.7524/j.issn.0254-6108.2017050301 [17] 田洪海, 邢小茹, 宁远英, 等. 我国环境标准样品发展及应用[J]. 中国环境监测, 2019, 35(5): 12-17. [18] 国家质量监督检验检疫总局. 通用计量术语及定义: JJF 1001-2011[S]. 北京: 中国标准出版社, 2011. [19] 国家市场监督管理总局. 标准物质计量溯源性的建立、评估与表达计量技术规范: JJF 1854-2020[S]. 2020. [20] WISE S A. What if using certified reference materials (CRMs) was a requirement to publish in analytical/bioanalytical chemistry journals?[J]. Analytical and Bioanalytical Chemistry, 2022, 414(24): 7015-7022. doi: 10.1007/s00216-022-04163-8 [21] 国家市场监督管理总局. 标准物质的定值及均匀性、稳定性评估: JJF 1343-2022[S]. 北京: 中国标准出版社, 2022. [22] 国家市场监督管理总局. 纯度标准物质定值计量技术规范 有机物纯度标准物质: JJF 1855-2020[S]. 北京: 中国标准出版社, 2020. [23] RICCI M, LAVA R, KOLEVA B. Matrix Certified Reference Materials for environmental monitoring under the EU Water Framework Directive: An update[J]. TrAC Trends in Analytical Chemistry, 2016, 76: 194-202. doi: 10.1016/j.trac.2015.11.002 [24] NAVARATHNA C M, PRAY H, RODRIGO P M, et al. Microplastics and Per- and Polyfluoroalkyl Substances (PFAS) Analysis in Sea Turtles and Bottlenose Dolphins along Mississippi’s Coast[J]. Analytica, 2023, 4(1): 12-26. doi: 10.3390/analytica4010003 [25] SKEDUNG L, SAVVIDOU E, SCHELLENBERGER S, et al. Identification and quantification of fluorinated polymers in consumer products by combustion ion chromatography and pyrolysis-gas chromatography-mass spectrometry[J]. Environmental Science: Processes & Impacts, 2024, 26(1): 82-93. [26] KÄRRMAN A, YEUNG L W Y, SPAAN K M, et al. Can determination of extractable organofluorine (EOF) be standardized? First interlaboratory comparisons of EOF and fluorine mass balance in sludge and water matrices[J]. Environmental Science: Processes & Impacts, 2021, 23(10): 1458-1465. [27] GETZINGER G J, FERGUSON P L. High-Throughput Trace-Level Suspect Screening for Per- and Polyfluoroalkyl Substances in Environmental Waters by Peak-Focusing Online Solid Phase Extraction and High-Resolution Mass Spectrometry[J]. ACS ES& T Water, 2021, 1(5): 1240-1251. [28] SALIHOVIC S, NYSTRÖM N, MATHISEN C B W, et al. Identification and validation of a blood- based diagnostic lipidomic signature of pediatric inflammatory bowel disease[J]. Nature Communications, 2024, 15(1): 4567. doi: 10.1038/s41467-024-48763-7 [29] LIND P M, LIND L, SALIHOVIC S, et al. Serum levels of perfluoroalkyl substances (PFAS) and body composition – A cross-sectional study in a middle-aged population[J]. Environmental Research, 2022, 209: 112677. doi: 10.1016/j.envres.2022.112677 [30] SALIHOVIC S, KÄRRMAN A, LINDSTRÖM G, et al. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1305: 164-170. doi: 10.1016/j.chroma.2013.07.026 [31] STUBLESKI J, KUKUCKA P, SALIHOVIC S, et al. A method for analysis of marker persistent organic pollutants in low-volume plasma and serum samples using 96-well plate solid phase extraction[J]. Journal of Chromatography A, 2018, 1546: 18-27. doi: 10.1016/j.chroma.2018.02.057 [32] SALIHOVIĆ S, DICKENS A M, SCHOULTZ I, et al. Simultaneous determination of perfluoroalkyl substances and bile acids in human serum using ultra-high-performance liquid chromatography–tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2020, 412(10): 2251-2259. doi: 10.1007/s00216-019-02263-6 [33] PALÁT J, KUKUČKA P, CODLING G P, et al. Application of 96-well plate SPE method for analysis of persistent organic pollutants in low volume blood serum samples[J]. Chemosphere, 2022, 287: 132300. doi: 10.1016/j.chemosphere.2021.132300 [34] RODOWA A E, REINER J L. Utilization of a NIST SRM: a case study for per- and polyfluoroalkyl substances in NIST SRM 1957 organic contaminants in non-fortified human serum[J]. Analytical and Bioanalytical Chemistry, 2021, 413(9): 2295-2301. doi: 10.1007/s00216-021-03241-7 [35] DA SILVA B F, AHMADIRESKETY A, ARISTIZABAL-HENAO J J, et al. A rapid and simple method to quantify per- and polyfluoroalkyl substances (PFAS) in plasma and serum using 96-well plates[J]. MethodsX, 2020, 7: 101111. doi: 10.1016/j.mex.2020.101111 [36] SPAAN K M, YUAN B, PLASSMANN M M, et al. Characterizing the Organohalogen Iceberg: Extractable, Multihalogen Mass Balance Determination in Municipal Wastewater Treatment Plant Sludge[J]. Environmental Science & Technology, 2023, 57(25): 9309-9320. [37] SCHULZ K, SILVA M R, KLAPER R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: A review of recent literature[J]. Science of The Total Environment, 2020, 733: 139186. doi: 10.1016/j.scitotenv.2020.139186 [38] SAN ROMÁN A, ABILLEIRA E, IRIZAR A, et al. Optimization for the analysis of 42 per- and polyfluorinated substances in human plasma: A high-throughput method for epidemiological studies[J]. Journal of Chromatography A, 2023, 1712: 464481. doi: 10.1016/j.chroma.2023.464481 [39] FIEDLER H, SADIA M, BAABISH A, et al. Perfluoroalkane substances in national samples from global monitoring plan projects (2017–2019)[J]. Chemosphere, 2022, 307: 136038. doi: 10.1016/j.chemosphere.2022.136038 [40] SADIA M, YEUNG L W Y, FIEDLER H. Trace level analyses of selected perfluoroalkyl acids in food: Method development and data generation[J]. Environmental Pollution, 2020, 263: 113721. doi: 10.1016/j.envpol.2019.113721 [41] VAN DER VEEN I, FIEDLER H, DE BOER J. Assessment of the per- and polyfluoroalkyl substances analysis under the Stockholm Convention – 2018/2019[J]. Chemosphere, 2023, 313: 137549. doi: 10.1016/j.chemosphere.2022.137549 [42] FIEDLER H, SADIA M, KRAUSS T, et al. Perfluoroalkane acids in human milk under the global monitoring plan of the Stockholm Convention on Persistent Organic Pollutants (2008–2019)[J]. Frontiers of Environmental Science & Engineering, 2022, 16(10): 132. [43] 王振华. 环境监测分析中标准物质的选择及应用[J]. 化学分析计量, 2022, 31(4): 93-97. doi: 10.3969/j.issn.1008-6145.2022.04.019 [44] 张恣意, 龚艳, 曹文成, 等. 我国主要食品中全氟烷基化合物的污染现状及膳食暴露评估研究进展[J]. 食品工业科技, 2021, 42(8): 410-416. [45] ZHOU J, YAN J, QI X, et al. Development of a new matrix-certified reference material for accurate measurement of PFOA and PFOS in oyster meat powder[J]. Microchemical Journal, 2023, 190: 108673. doi: 10.1016/j.microc.2023.108673 [46] 齐鑫. 牡蛎中PFOA和PFOS高准确度定值方法研究及基体标准物质研制[D]. 北京: 中国农业科学院, 2021. [47] Shop NIST | E-Commerce Store[EB/OL]. [2024-05-25]. https://shop.nist.gov/ccrz__ProductList?categoryId=a0l3d0000005KqIAAU&cclcl=en_US. [48] Perfluoroalkylated Substance (PFAS) Research Chemicals & Reference Materials | LGC Standards[EB/OL]. [2024-05-25]. https://www.lgcstandards.com/GB/en/Environmental-Reference-Materials/Perfluoroalkylated-Substance-PFAS-Research-Chemicals-Reference-Materials-/cat/285186.