留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fluent DPM模型对污水用超声波流量计精度分析

宋超 蔡丽枝 刘鸿滨

宋超,蔡丽枝,刘鸿滨. 基于Fluent DPM模型对污水用超声波流量计精度分析[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0200
引用本文: 宋超,蔡丽枝,刘鸿滨. 基于Fluent DPM模型对污水用超声波流量计精度分析[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0200
SONG Chao, CAI Lizhi, LIU Hongbin. Accuracy Analysis of Ultrasonic Flowmeter for Sewage Based on Fluent DPM Model[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0200
Citation: SONG Chao, CAI Lizhi, LIU Hongbin. Accuracy Analysis of Ultrasonic Flowmeter for Sewage Based on Fluent DPM Model[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0200

基于Fluent DPM模型对污水用超声波流量计精度分析

doi: 10.12338/j.issn.2096-9015.2024.0200
基金项目: 福建省计量科学研究院科技计划项目(FJJLK2023023)。
详细信息
    作者简介:

    宋超(1995-),福建省计量科学研究院工程师,研究方向:流量计量检测技术研发,邮箱:1076790877@qq.com

  • 中图分类号: TB937

Accuracy Analysis of Ultrasonic Flowmeter for Sewage Based on Fluent DPM Model

  • 摘要: 针对上游弯管扰乱流场以及污水中颗粒杂质导致超声波衰减问题,基于Fluent Discrete Phase Model(DPM)双向耦合模型进行仿真计算。在污染物浓度为1%情况下,设置4种不同直径的碳酸钙杂质。不同直径杂质的污水中,均出现随着流量点的增大流量系数k值逐渐减小的状况,但在小流量点20 m3/h时,80 μm大颗粒杂质对系数k的影响最大超出了5%,流动速率不足以维持较大的颗粒悬浮在流体中,导致流场中颗粒浓度分布不均,超声波在传播路径上的速度有较大的波动。在压力云图中发现随着颗粒物直径的增加,管道截面上流体速度压力梯度变化较大导致流场波动剧烈,进而影响超声波传播路径上速度的变化,引起流量计产生误差。为了降低大颗粒杂质在下游引起的湍流脉动,在弯角处设置整流器,使用Solidworks建立Laws整流器物理模型。研究发现下游流场更加均匀,速度梯度变化较小,减小了回流涡对超声波在传递路线上的影响。对改善下游流场均匀性,提高超声波流量计在污水中测量精度具有指导意义。
  • 图  1  超声波测量原理图

    Figure  1.  Schematic diagram of ultrasonic measurement

    图  2  物理与网格模型

    Figure  2.  Physics and grid model

    图  3  阻力系数的模拟值和理论值

    Figure  3.  Simulated and theoretical values of resistance coefficient

    图  4  不同颗径下截面流线图

    (a)颗粒直径为1 μm. (b)颗粒直径为20 μm. (c)颗粒直径为50 μm. (d)颗粒直径为80 μm

    Figure  4.  Cross section streamline diagram under different particle sizes

    图  5  速度等值云图

    (a)颗粒直径为1 μm. (b)颗粒直径为20 μm. (c)颗粒直径为50 μm. (d)颗粒直径为80 μm

    Figure  5.  Velocity contour cloud map

    图  6  颗粒物对流量系数k的影响

    Figure  6.  Effect of particulate matter on flow coefficient k

    图  7  Laws整流器参数结构图

    Figure  7.  Structure diagram of Laws rectifier parameters

    图  8  整流器流道模型

    Figure  8.  Rectifier channel model

    图  9  流道截面压力分布云图

    Figure  9.  Cloud diagram of pressure distribution at the cross-section of the channel

    表  1  物理参数

    Table  1.   Physical parameters

    Q(m3/h)V(m/s)I(%)Re
    200.1774.26239423
    800.7083.584157692
    1601.4153.287315383
    4003.5392.931788458
    下载: 导出CSV
  • [1] L. R. The Theory of Sound[J]. Nature, 1898, 58(1493): 121-122. doi: 10.1038/058121a0
    [2] 张全兴. 超声波非均匀介质传播衰减特性研究 [D]. 沈阳: 沈阳工业大学, 2015.
    [3] HSU C Y, WU S J, WU R M. Particles Separation and Tracks in a Hydrocyclone[J]. Tamkang Institute of Technology Journal, 2011, 14(1): 65-70.
    [4] Guo S , Xiang N , Li B , et al. Integration method of multipath ultrasonic flowmeter based on velocity distribution[J]. Measurement, 2023, 207: 112388.
    [5] 张蒙, 杜广生, 程浩, 等. 杂质浓度对超声波传播特性及流量测量精度影响的研究[J]. 中国粮油学报, 2020, 35(10): 176-181. doi: 10.3969/j.issn.1003-0174.2020.10.028
    [6] 吕美高. 超声波污水流量测量方法研究与实现 [D]. 抚州: 东华理工大学, 2019.
    [7] 张宁波. 基于超声衰减的污水悬浊液浓度检测装置研究 [D]. 杭州: 浙江大学, 2016.
    [8] XU Z, LI M, HAN Y, et al. Robust Flow Estimation Algorithm of Multichannel Ultrasonic Flowmeter Based on Random Sampling Least Squares[J]. Sensors, 2022, 22(19): 7660. doi: 10.3390/s22197660
    [9] SAKHAVI N, NOURI N M. Performance of novel multipath ultrasonic phased array flowmeter using Gaussian quadrature integration [J]. Applied acoustics, 2022.
    [10] GE L, DENG H, WANG Q, et al. Study of the influence of temperature on the measurement accuracy of transit-time ultrasonic flowmeters [J]. Sensor Review, 2019.
    [11] 马杰, 徐科军, 江圳, 等. 基于超声回波能量峰值点拟合的气体超声波流量计信号处理方法[J]. 计量学报, 2022, 43(5): 597-602. doi: 10.3969/j.issn.1000-1158.2022.05.06
    [12] 却依飞, 俞天阳, 张世玮, 等. 超声波峰谷拟合方法及平面叶栅通道二维流速测量[J]. 计量学报, 2023, 44(5): 729-734. doi: 10.3969/j.issn.1000-1158.2023.05.09
    [13] 任大呈, 魏华彤, 刘岩, 等. 探头扰流对多声道超声波流量计测量结果影响研究[J]. 仪表技术与传感器, 2023(2): 110-114. doi: 10.3969/j.issn.1002-1841.2023.02.021
    [14] 姚爽, 宿彬, 杨宗良, 等. 上游弯管对超声波流量计精度影响及整流设计[J]. 仪器仪表学报, 2022, 43(5): 102-109.
    [15] CHEN W, WU J, LI C. The Investigation on the Flow Distortion Effect of Header to Guarantee the Measurement Accuracy of the Ultrasonic Gas Flowmeter[J]. Applied Sciences, 2021, 11(8): 3656. doi: 10.3390/app11083656
    [16] AMAA , BSHHA, BFMA. Numerical study on the effect of circumferential position of ultrasonic transducers on ultrasonic cross-correlation flowmeter performance under asymmetric air flow profile[J]. Ultrasonics, 2021, 115.
    [17] CHEN D, CAO H, CUI B. Study on flow field and measurement characteristics of a small-bore ultrasonic gas flow meter[J]. Measurement and Control, 2021, 54(5-6): 554-564. doi: 10.1177/00202940211007515
    [18] 吴森林, 王秋良, 但植华, 等. 基于CFD的弯管流动与换热影响因素研究[J]. 中国测试, 2023, 49(9): 7-15. doi: 10.11857/j.issn.1674-5124.2022020102
    [19] 石硕. 水中杂质对超声波热量表测量精度影响规律的研究 [D]. 济南: 山东大学, 2017.
    [20] 霍尔曼. 传热学[M]. 北京: 机械工业出版社, 2005.
    [21] 刘亚男, 杨鸣. 弯管对超声波流量计测量精度的影响及改善措施[J]. 宁波大学学报(理工版), 2022, 35(3): 98-105.
    [22] 赵楠楠, 徐安察, 胡亮, 等. 基于声速追踪的超声波液体流量计量方法[J]. 仪表技术与传感器, 2022(9): 41-46.
    [23] LARIBI B, ABDELLAH HADJ A. Analysis of Turbulent Flow Development Downstream Disturbers with Perforated Plate Flow Conditioner[J]. Applied Mechanics and Materials, 2012, 197: 73-77. doi: 10.4028/www.scientific.net/AMM.197.73
    [24] Uhm J H , Romig B W , Chong Y H . FUEL/AIR MIXING SYSTEM FOR FUEL NOZZLE: US201313776638[P]. US2014238025A1[2024-09-30].
    [25] 田顺佳, 戚有龙, 冯春辉, 等. 不同整流器对超声波流量计计量的影响[J]. 油气储运, 2021, 40(7): 780-790. doi: 10.6047/j.issn.1000-8241.2021.07.009
    [26] PENG S, ZHANG Y, ZHAO W, et al. Analysis of the Influence of Rectifier Blockage on the Metering Performance during Shale Gas Extraction[J]. Energy & Fuels, 2021, 35(1): 03748.
    [27] 刘桂雄, 陈国宇, 谭文胜. 流量测量流动调整器结构与发展趋势分析[J]. 中国测试, 2020, 46(3): 12-16. doi: 10.11857/j.issn.1674-5124.2019100018
    [28] 朱国俊. 典型扰流流场对超声流量计计量性能的影响研究 [D]. 北京: 北京化工大学, 2023.
    [29] 陈红, 聂西利, 丁渊明. 超声波流量计整流器设计及验证[J]. 自动化仪表, 2018, 39(7): 91-93,102.
    [30] 邵欣, 王涛, 高芦宝, 等. 基于CFD的超声波气体流量计过渡区内流场检测优化研究[J]. 中国测试, 2021, 47(10): 114-122. doi: 10.11857/j.issn.1674-5124.2021010101
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 录用日期:  2024-07-17
  • 修回日期:  2024-08-29
  • 网络出版日期:  2024-10-14

目录

    /

    返回文章
    返回