Research Progress on Different Catalytic Techniques for Carbon Dioxide Reduction Reaction
-
摘要: 二氧化碳(CO2)作为典型的温室气体,其含量升高是造成全球温室效应的主要因素。随着我国“2030年实现碳达峰”与“2060年实现碳中和”目标的提出,如何实现CO2高效转化成为了我国科研人员关注的重要研究方向之一。二氧化碳还原反应(CO2RR)是利用光催化、热催化、电催化以及生物催化等技术将CO2转化为碳基燃料和高附加值产物的常用手段。然而,上述技术仍存在CO2转化效率低、目标产物选择性低以及反应稳定性差等问题。根据不同催化技术的反应原理,结合催化剂的材料或负载方式等特点,综述了二氧化碳还原生成甲醇、甲烷和乙烯等产物的最新研究进展,为二氧化碳还原和利用提供进一步的参考。Abstract: Elevated levels of carbon dioxide (CO2), a typical greenhouse gas, are a major contributor to the global greenhouse effect. With China’s goals of “achieving carbon peak by 2030” and “achieving carbon neutrality by
2060 ”, how to efficiently convert CO2 has become an important research direction for Chinese researchers. Carbon dioxide reduction reaction (CO2RR) is a common means of converting CO2 into carbon-based fuels and high-value-added products using photocatalytic, thermal catalytic, electrocatalytic, and biocatalytic technologies. However, the above technologies still suffer from low CO2 conversion efficiency, low target product selectivity, and poor reaction stability. This paper is based on the reaction principles of different catalytic techniques, combined with the characteristics of the catalysts such as material or loading method. Recent research progress in the formation of products such as methanol, methane, and ethylene from carbon dioxide reduction is reviewed. The aim is to provide further guidance for carbon dioxide reduction and utilization.-
Key words:
- metrology /
- carbon dioxide reduction reaction /
- catalytic techniques /
- carbon peak /
- carbon neutrality
-
图 5 热催化CO2RR不同催化剂的催化机理:(A)Pd贵金属催化剂对CH3OH的转化效率以及转化机制示意图;(B)DFM催化剂CO2加氢转化CH4示意图
Figure 5. Catalytic mechanism of different catalysts for thermal catalysis CO2RR: (A) Schematic diagram of the conversion efficiency of CH3OH by Pd noble metal catalysts and the mechanism of conversion; (B) Schematic diagram of CO2 hydrogenation conversion to CH4 by DFM catalysts
表 1 CO2光催化还原机理
Table 1. Photocatalytic reduction mechanism of CO2
机理I 机理II 机理III 2CO2+4H·→2HCOOH+O2 2CO2→2CO+O2 CO2+e−→${\mathrm{CO}}^{\cdot}_2 $ HCOOH+2H·→HCOH+H2O 2CO→2C·+${\mathrm{CO}}^{\cdot}_2 $ ${\mathrm{CO}}^{\cdot}_3 $+H·→OC·H+OH− HCOH+2H·→CH3OH C·+H·→CH3OH OC·H+OC·H→HOCCOH CH2OH+H·→${\mathrm{CH}}^{\cdot}_3 $ CH·+H·→${\mathrm{CH}}^{\cdot}_2 $ HOCCOH+4H·→CH3COH ${\mathrm{CH}}^{\cdot}_3 $+H·→CH4 ${\mathrm{CH}}^{\cdot}_2 $+H·→${\mathrm{CH}}^{\cdot}_3 $ CH3COH+H·→${\mathrm{CH}}^{\cdot}_3 $+CO ${\mathrm{CH}}^{\cdot}_3 $+${\mathrm{CH}}^{\cdot}_3 $→C2H6 ${\mathrm{CH}}^{\cdot}_3 $+H·→CH4 ${\mathrm{CH}}^{\cdot}_3 $+H·→CH4 ${\mathrm{CH}}^{\cdot}_3 $+OH→CH3OH 表 2 电催化CO2RR产物种类
Table 2. Types of electrocatalytic CO2RR products
产物 化学式 #e- E(pH=6.8) 产物 化学式 #e- E(pH=6.8) 1-丙醇 18 0.21 乙二醇 10 0.20 丙醛 16 0.14 乙醇醛 8 −0.03 烯丙醇 16 0.11 醋酸 8 −0.26 丙酮 16 −0.14 甲烷 8 0.17 羟基丙酮 14 0.46 乙二醛 6 −0.16 乙烯 12 0.08 甲醇 6 0.03 乙醇 12 0.09 一氧化碳 2 −0.10 乙醛 10 0.05 甲酸盐 2 −0.02 -
[1] 周枫然, 舒慧, 杨扬仲夫, 等. 应对双碳目标的降碳与计量技术研究进展[J]. 计量科学与技术, 2023, 67(9): 15-24. [2] TU W, ZHOU Y, ZOU Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state‐of‐the‐art accomplishment, challenges, and prospects[J]. Adv. Mater., 2014, 26(27): 4607-4626. doi: 10.1002/adma.201400087 [3] BADDOUR F G, ROBERTS E J, TO A T, et al. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation[J]. J. Am. Chem. Soc., 2020, 142(2): 1010-1019. doi: 10.1021/jacs.9b11238 [4] LI J, GAO X, ZHU L, et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications[J]. Energy Environ. Sci., 2020, 13(5): 1326-1346. doi: 10.1039/C9EE03558C [5] GONG F, LI Y. Fixing carbon, unnaturally[J]. science, 2016, 354(6314): 830-831. doi: 10.1126/science.aal1559 [6] LI Z, HAN B, BAI W C, et al. Photocatalytic CO2RR for gas fuel production: Opportunities and challenges[J]. Sep. Purif. Technol. , 2023: 124528. [7] 郭得通, 丁红蕾, 潘卫国, 等. CO2催化转化的研究现状及趋势[J]. 中国电机工程学报, 2019, 39(24): 7242-7252,7497. [8] SUBRAHMANYAM M, KANECO S, ALONSO-VANTE N. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity[J]. Appl. Catal. , B, 1999, 23(2-3): 169-174. doi: 10.1016/S0926-3373(99)00079-X [9] SASIREKHA N, BASHA S J S, SHANTHI K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide[J]. Appl. Catal. , B, 2006, 62(1-2): 169-180. doi: 10.1016/j.apcatb.2005.07.009 [10] SHKROB I A, MARIN T W, HE H, et al. Photoredox reactions and the catalytic cycle for carbon dioxide fixation and methanogenesis on metal oxides[J]. J. Phys. Chem. C, 2012, 116(17): 9450-9460. doi: 10.1021/jp300122v [11] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638. doi: 10.1038/277637a0 [12] HSU H C, SHOWN I, WEI H Y, et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion[J]. Nanoscale, 2013, 5(1): 262-268. doi: 10.1039/C2NR31718D [13] SHOWN I, HSU H C, CHANG Y C, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide[J]. Nano Lett., 2014, 14(11): 6097-6103. doi: 10.1021/nl503609v [14] LI K K, ZHANG Y T, JIA J, et al. 2D/2D Carbon Nitride/Zn-Doped Bismuth Vanadium Oxide S-Scheme Heterojunction for Enhancing Photocatalytic CO2 Reduction into Methanol[J]. Ind. Eng. Chem. Res., 2023, 62(13): 5552-5562. doi: 10.1021/acs.iecr.2c03536 [15] MA M Z, HUANG Z A, WANG R, et al. Targeted H2O activation to manipulate the selective photocatalytic reduction of CO2 to CH3OH over carbon nitride-supported cobalt sulfide[J]. Green Chem., 2022, 24(22): 8791-8799. doi: 10.1039/D2GC03226K [16] FENG X, SLOPPY J D, LATEMPA T J, et al. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide[J]. J. Mater. Chem., 2011, 21(35): 13429-13433. doi: 10.1039/c1jm12717a [17] FENG S, ZHAO J, BAI Y, et al. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping[J]. J. CO2 Util., 2020, 38: 1-9. doi: 10.1016/j.jcou.2019.12.019 [18] ZHANG J, XU J, TAO F. Interface modification of TiO2 nanotubes by biomass-derived carbon quantum dots for enhanced photocatalytic reduction of CO2[J]. ACS Appl. Energy Mater., 2021, 4(11): 13120-13131. doi: 10.1021/acsaem.1c02760 [19] BAN C G, WANG Y, FENG Y J, et al. Photochromic single atom Ag/TiO2 catalysts for selective CO2 reduction to CH4[J]. Energy Environ. Sci., 2024, 17(2): 518-530. doi: 10.1039/D3EE02800C [20] WANG P, YANG F, QU J, et al. Recent advances and challenges in efficient selective photocatalytic CO2 methanation[J]. Small, 2024: 2400700. [21] ZHANG W, HU Y, MA L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J]. Adv. Sci., 2018, 5(1): 1700275. doi: 10.1002/advs.201700275 [22] KUHL K P, CAVE E R, ABRAM D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy Environ. Sci., 2012, 5(5): 7050-7059. doi: 10.1039/c2ee21234j [23] 董鹤楠, 戈阳阳, 魏新颖, 等. 碳布负载高致密Sn/SnBi合金的电催化CO2还原性能[J]. 无机化学学报, 2022, 38(12): 2433-2442. [24] ZHANG S, KANG P, UBNOSKE S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials[J]. J. Am. Chem. Soc., 2014, 136(22): 7845-7848. doi: 10.1021/ja5031529 [25] CHENG Y, HOU J, KANG P. Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles[J]. ACS Energy Lett., 2021, 6(9): 3352-3358. doi: 10.1021/acsenergylett.1c01553 [26] YANG F, JIANG C, MA M, et al. Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid[J]. Chem. Eng. J, 2020, 400: 125879. doi: 10.1016/j.cej.2020.125879 [27] GARCíA DE ARQUER F P, DINH C T, OZDEN A, et al. CO2 electrolysis to multicarbon products at activities greater than 1A cm−2[J]. science, 2020, 367(6478): 661-666. doi: 10.1126/science.aay4217 [28] CHEN X, CHEN J, ALGHORAIBI N M, et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes[J]. Nat. Catal., 2021, 4(1): 20-27. [29] LI Y C, WANG Z, YUAN T, et al. Binding site diversity promotes CO2 electroreduction to ethanol[J]. J. Am. Chem. Soc., 2019, 141(21): 8584-8591. doi: 10.1021/jacs.9b02945 [30] WANG Y X, WEI Y Y, LI Y H, et al. Highly Selective Conversion of Carbon Dioxide to Methanol through a Cu-ZnO-Al2O3-ZrO2/Cu-MOR Tandem Catalyst[J]. Chemcatchem, 2023, 15(17): e202300662. doi: 10.1002/cctc.202300662 [31] MANRIQUE R, JIMéNEZ R, RODRíGUEZ-PEREIRA J, et al. Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd[J]. Int. J. Hydrogen Energy, 2019, 44(31): 16526-16536. doi: 10.1016/j.ijhydene.2019.04.206 [32] WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci. Adv., 2017, 3(10): e1701290. doi: 10.1126/sciadv.1701290 [33] 王兆宇, 陈益宾, 程锦添, 等. Ni-Co/TiO2增强CO2加氢反应性能的研究[J]. 高等学校化学学报, 2023, 44(11): 163-171. [34] 赵传文, 黄浦, 郭亚飞. 二氧化碳捕集-加氢转化一体化技术研究进展与展望[J]. 洁净煤技术, 2024, 30(4): 1-20. [35] LV Z, RUAN J, TU W, et al. Integrated CO2 capture and In-Situ methanation by efficient dual functional Li4SiO4@ Ni/CeO2[J]. Sep. Purif. Technol., 2023, 309: 123044. doi: 10.1016/j.seppur.2022.123044 [36] YANG G C, ZHOU L, MBADINGA S M, et al. Bioconversion pathway of CO2 in the presence of ethanol by methanogenic enrichments from production water of a high-temperature petroleum reservoir[J]. Energies, 2019, 12(5): 918. doi: 10.3390/en12050918 [37] DAGLIOGLU S T, KARABEY B, OZDEMIR G, et al. CO2 utilization via a novel anaerobic bioprocess configuration with simulated gas mixture and real stack gas samples[J]. Environ. Technol., 2019, 40(6): 742-748. doi: 10.1080/09593330.2017.1406537