[1] |
Stratiev D, Shishkova I, Dinkov R, et al. Prediction of petroleum viscosity from molecular weight and density[J]. Fuel, 2023, 331: 125679. doi: 10.1016/j.fuel.2022.125679
|
[2] |
Gabsi K, Trigui M, Barrington S, et al. Evaluation of rheological properties of date syrup[J]. Journal of Food Engineering, 2013, 117(1): 165-172. doi: 10.1016/j.jfoodeng.2013.02.017
|
[3] |
Alexy T. Physical properties of blood and their relationship to clinical conditions[J]. Frontiers in Physiology. 2022, 13: 1-10.
|
[4] |
Zhu L, Lin W. Constructing a NIR fluorescent probe for ratiometric imaging viscosity in mice and detecting blood viscosity in folliculitis mice and peritonitis mice[J]. Sensors and Actuators B: Chemical, 2022, 352: 131042. doi: 10.1016/j.snb.2021.131042
|
[5] |
Goutham R, Rohit P, Vigneshwar S S, et al. Ionic liquids in wastewater treatment: A review on pollutant removal and degradation, recovery of ionic liquids, economics and future perspectives[J]. Journal of Molecular Liquids, 2022, 349: 118150. doi: 10.1016/j.molliq.2021.118150
|
[6] |
Cabrera S M, Winnubst L, Richter H, et al. Performance evaluation of an industrial ceramic nanofiltration unit for wastewater treatment in oil production[J]. Water Research, 2022, 220: 118593. doi: 10.1016/j.watres.2022.118593
|
[7] |
张健, 赵雄虎, 皮家安, 等. 粘度的测量方法及进展[J]. 中国仪器仪表, 2018(4): 81-86. doi: 10.3969/j.issn.1005-2852.2018.04.019
|
[8] |
CHENG J, GROBNER J, HORT N, et al. Measurement and calculation of the viscosity of metals—a review of the current status and developing trends[J]. Measurement Science & Technology, 2014, 25(6): 11260-11276.
|
[9] |
郁黄华, 庄豫玺, 顾申申. 基于阿里云的粘度计远程测控系统设计[J]. 工业控制计算机, 2022, 35(05): 46-8,72. doi: 10.3969/j.issn.1001-182X.2022.05.018
|
[10] |
MCKENNELL R. Cone-Plate Viscometer[J]. Analytical Chemistry, 1956, 28(11): 1710-1714. doi: 10.1021/ac60119a021
|
[11] |
Walters K, Jones W M. Measurement of viscosity[M]. 3rd ed. USA: Butterworth-Heinemann, 2003: 45-52.
|
[12] |
MEGALINGAM A, AHMAD A H B, MAAROF M R B, et al. Viscosity measurements in semi-solid metal processing: current status and recent developments[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(3): 1435-1459.
|
[13] |
GHANBARI A, MOUSAVI Z, HEUZEY M-C, et al. Experimental methods in chemical engineering: Rheometry[J]. The Canadian Journal of Chemical Engineering, 2020, 98(7): 1456-1470. doi: 10.1002/cjce.23749
|
[14] |
RENUKA A, MUTHTAMILSELVAN M, DOH D-H, et al. Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method[J]. Mathematics and Computers in Simulation, 2020, 171: 152-169. doi: 10.1016/j.matcom.2019.05.008
|
[15] |
CHEVREL M O, LATCHIMY T, BATIER L, et al. A new portable field rotational viscometer for high-temperature melts[J]. Review of Scientific Instruments, 2023, 94(10): 105116. doi: 10.1063/5.0160247
|
[16] |
DINSDALE A T, QUESTED P N. The viscosity of aluminium and its alloys--A review of data and models [J]. Journal of Materials Science, 2004, 39(24): 7221-7228.
|
[17] |
PATOUILLET K, DELACROIX J. Development of an oscillating cup viscometer for viscosity measurement of liquid metals at very high temperatures[J]. Measurement, 2023, 220: 113370. doi: 10.1016/j.measurement.2023.113370
|
[18] |
KEHR M, HOYER W, EGRY I. A New High-Temperature Oscillating Cup Viscometer[J]. International Journal of Thermophysics, 2007, 28(3): 1017-1025. doi: 10.1007/s10765-007-0216-9
|
[19] |
SHAMURATOV J, MUSTAFAYEV O, KADIROV I. New Viscometers for Measuring the Viscosity of Liquids[J]. Journal of Engineering, 2024, 2024(1): 6877306.
|
[20] |
SHVIDKOVSKIY Y G. Certain problems related to the viscosity of fused metals [M]. Washington: National Aeronautics and Space Administration, 1962.
|
[21] |
ROSCOE R. Viscosity Determination by the Oscillating Vessel Method I: Theoretical Considerations[J]. Proceedings of the Physical Society, 1958, 72(4): 576. doi: 10.1088/0370-1328/72/4/312
|
[22] |
KESTIN J, NEWELL G F. Theory of oscillation type viscometers: The oscillating cup: Part I[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1957, 8(6): 433-449.
|
[23] |
KNAPPWOST A. Ein neues Verfahren zur Hochtemperaturviskosimetrie nach der Methode des schwingenden Hohlkörpers[J]. Zeitschrift für Physikalische Chemie, 1952, 200(1): 81-89.
|
[24] |
MIRGORODSKAYA A. The history of the development of the capillary method for measuring kinematic viscosity: from the Lomonosov viscometer to the information-measuring system[J]. Measurement Techniques, 2023, 66(8): 610-618. doi: 10.1007/s11018-023-02273-y
|
[25] |
张正东. JJG155-2016《工作毛细管黏度计检定规程》 解读[J]. 中国计量, 2017(3): 128-130.
|
[26] |
金愿, 胡央丽, 朱绚华. 工作毛细管黏度计全国量值比对及结果分析[J]. 上海计量测试, 2024, 51(2): 49-53. doi: 10.3969/j.issn.1673-2235.2024.02.016
|
[27] |
袁晓丽. 毛细管黏度计检定过程中影响因素的分析[J]. 中文科技期刊数据库(全文版)自然科学, 2024(5): 0052-0055.
|
[28] |
HADI H S, AISYAH P Y, FITRIYANAH D N, et al. Fluid Viscosity Measurement With Capillary Pipe Based On Internet Of Things (IoT); Proceedings of the 2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), December 8-9, 2021[C]. Surabya: Institute of Electrical and Electronics Engineers Inc, 2021: 66-72.
|
[29] |
HARANGUS K, KAKUCS A. Mass-Measurement-based Automatization of the Engler-Viscometer[J]. Acta Polytechnica Hungarica, 2021, 18(5): 77-92. doi: 10.12700/APH.18.5.2021.5.6
|
[30] |
高桂丽, 李大勇, 石德全. 液体粘度测定方法及装置研究现状与发展趋势简述[J]. 化工自动化及仪表, 2006, 33(2): 65-70. doi: 10.3969/j.issn.1000-3932.2006.02.018
|
[31] |
赵北君, 朱世富, 李正辉, 等. 光电落球粘度计的研制[J]. 四川大学学报: 自然科学版, 1994, 31(2): 280-282.
|
[32] |
DARIDON J-L, BAZILE J-P, GALLIERO G. Advances in Falling-Cylinder Viscometry: A Comprehensive Review[J]. International Journal of Thermophysics, 2024, 45(5): 1-47.
|
[33] |
HARRIS K R. A Falling Body High-Pressure Viscometer[J]. International Journal of Thermophysics, 2023, 44(12): 184. doi: 10.1007/s10765-023-03285-0
|
[34] |
ALI S H, AL-ZUKY A A D, AL-SALEH A H, et al. Measure liquid viscosity by tracking falling ball Automatically depending on image processing algorithm[J]. Journal of Physics: Conference Series, 2019: 022002.
|
[35] |
GITIS M, CHUPRIN V. Application of surface and normal ultrasonic waves for measuring the parameters of technical fluids: I. Shear viscosity measurements[J]. Technical physics, 2012, 57(5): 671-676. doi: 10.1134/S1063784212050106
|
[36] |
MASTROMARINO S, ROOK R, DE HAAS D, et al. An ultrasonic shear wave viscometer for low viscosity Newtonian liquids[J]. Measurement Science and Technology, 2021, 32(12): 125305. doi: 10.1088/1361-6501/ac200f
|
[37] |
PUNEETH S, KULKARNI M B, GOEL S. Microfluidic viscometers for biochemical and biomedical applications: A review[J]. Engineering Research Express, 2021, 3(2): 022003. doi: 10.1088/2631-8695/abfd47
|
[38] |
黄琳雅, 赵立波, 罗国希, 等. 基于微机械电子技术的黏度测量传感器[J]. 机械工程学报, 2021, 57(8): 13-22.
|
[39] |
ODEN PI. Viscosity measuring using microcantilevers: US 6, 269, 685 B1[P]. 2001-08-07.
|
[40] |
ODEN PI, CHEN GY, STEELE R, et al. Viscous drag measurements utilizing microfabricated cantilevers[J]. Applied physics letters, 1996, 68(26): 3814-3816. doi: 10.1063/1.116626
|
[41] |
ETCHART I, CHEN H, DRYDEN P, et al. MEMS sensors for density–viscosity sensing in a low-flow microfluidic environment[J]. Sensors and Actuators A: Physical, 2008, 141(2): 266-275. doi: 10.1016/j.sna.2007.08.007
|
[42] |
HU Y, ZHAO L, WANG T, et al. The fluid viscosity measurement based on variable cross-section MEMS cantilever under torsional excitation; proceedings of the 2015 IEEE SENSORS, F, 2015 [C]. IEEE.
|
[43] |
ZHAO L, HU Y, WANG T, et al. A MEMS resonant sensor to measure fluid density and viscosity under flexural and torsional vibrating modes[J]. Sensors, 2016, 16(6): 830. doi: 10.3390/s16060830
|
[44] |
GONZALEZ M, SEREN H R, HAM G, et al. Viscosity and density measurements using mechanical oscillators in oil and gas applications[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 67(4): 804-810.
|
[45] |
ZHANG Y, WU X, WANG Y, et al. Measurement of the microscopic viscosities of microfluids with a dynamic optical tweezers system[J]. Laser physics, 2014, 24(6): 065601. doi: 10.1088/1054-660X/24/6/065601
|
[46] |
TASSIERI M, GIUDICE F D, ROBERTSON E J, et al. Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance’[J]. Scientific reports, 2015, 5(1): 8831. doi: 10.1038/srep08831
|
[47] |
CHEN W-Y, HUNG C-J, LIU C-Y. Microscopic Blood Viscosity Measurement using Optical Fiber Tweezers Imaging System; proceedings of the 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), F, 2023 [C]. IEEE.
|
[48] |
STATSENKO A, INAMI W, KAWATA Y. Measurement of viscosity of liquids using optical tweezers[J]. Optics Communications, 2017, 402: 9-13. doi: 10.1016/j.optcom.2017.05.034
|
[49] |
杜林, 周嘉. 基于微流控原理的液体粘度测量方法研究[J]. 仪器仪表学报, 2018, 39(5): 188-194.
|
[50] |
ANDRé E, PANNACCI N, DALMAZZONE C, et al. A new way to measure viscosity in droplet-based microfluidics for high throughput analysis[J]. Soft Matter, 2019, 15(3): 504-514. doi: 10.1039/C8SM02372G
|
[51] |
MENA S E, LI Y, MCCORMICK J, et al. A droplet-based microfluidic viscometer for the measurement of blood coagulation[J]. Biomicrofluidics, 2020, 14(1): 014109. doi: 10.1063/1.5128255
|
[52] |
COCHARD-MARCHEWKA P, BREMOND N, BAUDRY J. Droplet-based microfluidic platform for viscosity measurement over extended concentration range[J]. Lab on a Chip, 2023, 23(9): 2276-2285. doi: 10.1039/D3LC00073G
|
[53] |
MARTINEZ A W, PHILLIPS S T, BUTTE M J, et al. Patterned paper as a platform for inexpensive, low‐volume, portable bioassays[J]. Angewandte Chemie, 2007, 119(8): 1340-1342. doi: 10.1002/ange.200603817
|
[54] |
CATE D M, ADKINS J A, METTAKOONPITAK J, et al. Recent developments in paper-based microfluidic devices[J]. Analytical chemistry, 2015, 87(1): 19-41. doi: 10.1021/ac503968p
|
[55] |
RAYAPROLU A, SRIVASTAVA S K, ANAND K, et al. Fabrication of cost-effective and efficient paper-based device for viscosity measurement[J]. Analytica Chimica Acta, 2018, 1044: 86-92. doi: 10.1016/j.aca.2018.05.036
|
[56] |
PUNEETH S, GOEL S. Novel 3D printed microfluidic paper-based analytical device with integrated screen-printed electrodes for automated viscosity measurements[J]. IEEE Transactions on Electron Devices, 2019, 66(7): 3196-3201. doi: 10.1109/TED.2019.2913851
|
[57] |
JANG I, BERG K E, HENRY C S. Viscosity measurements utilizing a fast-flow microfluidic paper-based device[J]. Sensors and Actuators B: Chemical, 2020, 319: 128240. doi: 10.1016/j.snb.2020.128240
|