Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy
-
摘要: 石墨烯材料层数控制是石墨烯高质量发展的重要指标之一,准确测量层数是研究、开发和应用石墨烯材料的核心,研究分析石墨烯材料的层数对其产品特性和应用有着十分重要的影响。首先阐述了石墨烯层数测量研究的必要性,其次综述了现有几种石墨烯层数的测量方法,包括光学对比度法、拉曼光谱法、原子力显微镜法和高分辨透射电镜法,并依据拉曼光谱法测量分析了机械剥离法制备的石墨烯样品的层数,采用拉曼光谱对选区石墨烯样品进行随机测试,通过测试条件的选择使得空白衬底硅的拉曼模峰信号值高于
5000 。基于该测试方法,测量含有石墨烯样品的硅拉曼模的特征峰值,并计算含石墨烯样品和空白衬底的拉曼模峰高之比。将该比值与国家标准中拉曼法测量石墨烯材料层数的理论值进行比较,从而判断石墨烯样品的层数。测试结果表明,研究形成的技术方法可对机械剥离法制备的石墨烯薄膜样品层数进行测量,为石墨烯材料层数的研究及检测分析提供参考。Abstract: Graphene material layer control is one of the important indicators to achieve high-quality development of graphene. Accurately measuring the number of layers is the core for the research, development and application of graphene materials, and analyzing the number of layers for graphene materials has a significant impact on their product performance and applications., the necessity of graphene layer number measurement is first described, and then several existing methods for measuring graphene layers are summarized, including optical contrast method, Raman spectroscopy, atomic force microscopy, and high-resolution transmission electron microscopy. The number of layers of graphene samples prepared by mechanical exfoliation method is measured and analyzed based on Raman spectroscopy . Meanwhile, the randomly selected graphene samples are measured using Raman spectroscopy. By selecting the testing conditions, the signal value of Raman mode peak for blank substrate silicon is higher than 5000. Under the testing method, the characteristic peaks of silicon Raman modes containing graphene samples are measured, we also calculate the ratio of Raman peak heights between graphene containing samples and blank substrates. Compare this ratio with the theoretical value measured by Raman spectroscopy in the national standard to determine the number of layers for graphene samples. The test results show that the developed technique can measure the layer number of graphene film samples prepared by mechanical stripping method, and further provide a reference for detection analysis of the layer number of graphene materials.-
Key words:
- metrology /
- Raman spectroscopy /
- graphene /
- number of layers /
- mechanical exfoliation
-
表 1 石墨烯试样选区①处的单因素方差分析结果
Table 1. Results of one-way analysis of variance at section ① for graphene sample
测量域 自由度
(υ)平方和
(SS)均方
(MS)标准偏差
(S)总平
均值区域间 9 0.0165 0.0018 0.0170 0.9274 重复性 10 0.0125 0.0013 0.0354 表 2 石墨烯试样选区②处的单因素方差分析结果
Table 2. Results of one-way analysis of variance at section ② for graphene sample
测量域 自由度
(υ)平方和
(SS)均方
(MS)标准偏差
(S)总平
均值区域间 9 0.0080 0.0009 0.0160 0.7982 重复性 10 0.0038 0.0004 0.0194 表 3 石墨烯试样选区③处的单因素方差分析结果
Table 3. Results of one-way analysis of variance at section ③ for graphene sample
测量域 自由度(υ) 平方和(SS) 均方(MS) 标准偏差(S) 总平均值 区域间 9 0.0064 0.0009 0.0115 0.7504 重复性 10 0.0081 0.0006 0.0252 -
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896 [2] Wu J, Lin H, Moss D J, et al. Graphene oxide for photonics, electronics and optoelectronics[J]. Nature Reviews Chemistry, 2023, 7(3): 162-183. doi: 10.1038/s41570-022-00458-7 [3] Xia Y, Gao W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. doi: 10.1002/adfm.202204591 [4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6: 183-191. doi: 10.1038/nmat1849 [5] Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686. doi: 10.1039/C1CS15078B [6] Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization[J]. Nature nanotechnology, 2014, 9(10): 730-734. doi: 10.1038/nnano.2014.225 [7] Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials[J]. National Science Review, 2018, 5(1): 90-101. doi: 10.1093/nsr/nwx055 [8] Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry[J]. Nature materials, 2019, 18(6): 520-524. doi: 10.1038/s41563-019-0341-4 [9] Barkan T. Graphene: the hype versus commercial reality[J]. Nature nanotechnology, 2019, 14(10): 904-906. doi: 10.1038/s41565-019-0556-1 [10] Pollard A J. Metrology for graphene and 2D materials[J]. Measurement Science and Technology, 2016, 27(9): 092001. doi: 10.1088/0957-0233/27/9/092001 [11] Wyss K M, Luong D X, Tour J M. Large-scale syntheses of 2D materials: flash joule heating and other methods[J]. Advanced materials, 2022, 34(8): 2106970. doi: 10.1002/adma.202106970 [12] Liu W, Lv J, Peng L, et al. Graphene charge-injection photodetectors[J]. Nature Electronics, 2022, 5(5): 281-288. doi: 10.1038/s41928-022-00755-5 [13] Das S, Pandey D, Thomas J, et al. The role of graphene and other 2D materials in solar photovoltaics[J]. Advanced Materials, 2019, 31(1): 1802722. doi: 10.1002/adma.201802722 [14] Carey T, Alhourani A, Tian R, et al. Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage[J]. npj 2D Materials and Applications, 2022, 6(1): 3. doi: 10.1038/s41699-021-00279-0 [15] Dhanola A, Gajrani K K. Novel insights into graphene-based sustainable liquid lubricant additives: A comprehensive review[J]. Journal of Molecular Liquids, 2023: 122523. [16] Sekhon S S, Kaur P, Kim Y H, et al. 2D graphene oxide–aptamer conjugate materials for cancer diagnosis[J]. npj 2D Materials and Applications, 2021, 5(1): 21. doi: 10.1038/s41699-021-00202-7 [17] Du J, Pei S, Ma L, et al. 25th anniversary article: carbon nanotube-and graphene-based transparent conductive films for optoelectronic devices[J]. Advanced materials, 2014, 26(13): 1958-1991. doi: 10.1002/adma.201304135 [18] Jang H, Park Y J, Chen X, et al. Graphene-based flexible and stretchable electronics[J]. Advanced Materials, 2016, 28(22): 4184-4202. doi: 10.1002/adma.201504245 [19] Yang Y, Wei Y, Guo Z, et al. From materials to devices: Graphene toward practical applications[J]. Small Methods, 2022, 6(10): 2200671. doi: 10.1002/smtd.202200671 [20] Duan K, Zhu F, Tang K, et al. Effects of chirality and number of graphene layers on the -mechanical properties of graphene-embedded copper nanocomposites[J]. Computational Materials Science, 2016, 117: 294-299. doi: 10.1016/j.commatsci.2016.02.007 [21] Munoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition, 2013, 19(10-11-12): 297-322. doi: 10.1002/cvde.201300051 [22] Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. doi: 10.1039/C5TA00252D [23] Yazdi G R, Iakimov T, Yakimova R. Epitaxial graphene on SiC: a review of growth and characterization[J]. Crystals, 2016, 6(5): 53. doi: 10.3390/cryst6050053 [24] Guo C, Cai Y, Zhao H, et al. Efficient synthesis of graphene oxide by Hummers method assisted with an electric field[J]. Materials Research Express, 2019, 6(5): 055602. doi: 10.1088/2053-1591/ab023d [25] Shearer C J, Slattery A D, Stapleton A J, et al. Accurate thickness measurement of graphene[J]. Nanotechnology, 2016, 27(12): 125704. doi: 10.1088/0957-4484/27/12/125704 [26] Bruna M, Borini S. Assessment of graphene quality by quantitative optical contrast analysis[J]. Journal of Physics D: Applied Physics, 2009, 42(17): 175307. doi: 10.1088/0022-3727/42/17/175307 [27] Bayle M, Reckinger N, Felten A, et al. Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast[J]. Journal of Raman Spectroscopy, 2018, 49(1): 36-45. doi: 10.1002/jrs.5279 [28] Ouyang W, Liu X Z, Li Q, et al. Optical methods for determining thicknesses of few-layer graphene flakes[J]. Nanotechnology, 2013, 24(50): 505701. doi: 10.1088/0957-4484/24/50/505701 [29] Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X [30] Yoon D, Moon H, Cheong H, et al. Variations in the Raman spectrum as a function of the number of graphene layers[J]. J. Korean Phys. Soc, 2009, 55(3): 1299-1303 [31] Mondal M, Dash A K, Singh A. Optical microscope based universal parameter for identifying layer number in two-dimensional materials[J]. ACS nano, 2022, 16(9): 14456-14462. doi: 10.1021/acsnano.2c04833 [32] Li X L, Qiao X F, Han W P, et al. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates[J]. Nanoscale, 2015, 7(17): 8135-8141. doi: 10.1039/C5NR01514F [33] Ozaki Y, Šašic S. Introduction to Raman spectroscopy[J]. Pharmaceutical Applications of Raman Spectroscopy, 2008: 1-28. [34] GB/T 40069-2021. 纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法[S]. 北京: 中国标准出版社, 2021 [35] Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X [36] Kumar N, Salehiyan R, Chauke V, et al. Top-down synthesis of graphene: A comprehensive review[J]. FlatChem, 2021, 27: 100224 doi: 10.1016/j.flatc.2021.100224 [37] GB/T 15000.5-2023. 标准样品工作导则 第5部分: 质量控制样品的内部研制[S]. 北京: 中国标准出版社, 2023