留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼光谱法测量分析石墨烯层数的研究

吕庆斌 梁俊梅 赵海波 赵晓宁 刘然 王冰玥

吕庆斌,梁俊梅,赵海波,等. 基于拉曼光谱法测量分析石墨烯层数的研究[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0218
引用本文: 吕庆斌,梁俊梅,赵海波,等. 基于拉曼光谱法测量分析石墨烯层数的研究[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0218
LV Qingbin, LIANG Junmei, ZHAO Haibo, ZHAO Xiaoning, LIU Ran, WANG Bingyue. Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0218
Citation: LV Qingbin, LIANG Junmei, ZHAO Haibo, ZHAO Xiaoning, LIU Ran, WANG Bingyue. Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0218

基于拉曼光谱法测量分析石墨烯层数的研究

doi: 10.12338/j.issn.2096-9015.2024.0218
基金项目: 国家市场监督管理总局科技计划项目(2022MK002)。
详细信息
    作者简介:

    吕庆斌(1982-),北京市计量检测科学研究院高级工程师,研究方向:碳计量与检测,邮箱:Lvqb@bjjl.cn

    通讯作者:

    梁俊梅(1990-),北京市计量检测科学研究院工程师,研究方向:纳米材料计量及检测,邮箱:liangjm@bjjl.cn

    赵海波(1974-),北京市计量检测科学研究院正高级工程师,研究方向:化学计量,邮箱:zhaohb@bjjl.cn

Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy

  • 摘要: 石墨烯材料层数控制是石墨烯高质量发展的重要指标之一,准确测量层数是研究、开发和应用石墨烯材料的核心,研究分析石墨烯材料的层数对其产品特性和应用有着十分重要的影响。首先阐述了石墨烯层数测量研究的必要性,其次综述了现有几种石墨烯层数的测量方法,包括光学对比度法、拉曼光谱法、原子力显微镜法和高分辨透射电镜法,并依据拉曼光谱法测量分析了机械剥离法制备的石墨烯样品的层数,采用拉曼光谱对选区石墨烯样品进行随机测试,通过测试条件的选择使得空白衬底硅的拉曼模峰信号值高于5000。基于该测试方法,测量含有石墨烯样品的硅拉曼模的特征峰值,并计算含石墨烯样品和空白衬底的拉曼模峰高之比。将该比值与国家标准中拉曼法测量石墨烯材料层数的理论值进行比较,从而判断石墨烯样品的层数。测试结果表明,研究形成的技术方法可对机械剥离法制备的石墨烯薄膜样品层数进行测量,为石墨烯材料层数的研究及检测分析提供参考。
  • 图  1  选区①处石墨烯样品微观形貌及测量数据分布

    Figure  1.  Microstructure and distribution of measurement data for graphene sample at section ①

    图  2  选区②处石墨烯样品微观形貌及测量数据分布

    Figure  2.  Microstructure and distribution of measurement data for graphene sample at section ②

    图  3  选区③处石墨烯样品微观形貌及测量数据分布

    Figure  3.  Microstructure and distribution of measurement data for graphene sample at section ③

    表  1  石墨烯试样选区①处的单因素方差分析结果

    Table  1.   Results of one-way analysis of variance at section ① for graphene sample

    测量域自由度
    υ
    平方和
    SS
    均方
    MS
    标准偏差
    S
    总平
    均值
    区域间90.01650.00180.01700.9274
    重复性100.01250.00130.0354
    下载: 导出CSV

    表  2  石墨烯试样选区②处的单因素方差分析结果

    Table  2.   Results of one-way analysis of variance at section ② for graphene sample

    测量域 自由度
    υ
    平方和
    SS
    均方
    MS
    标准偏差
    S
    总平
    均值
    区域间 9 0.0080 0.0009 0.0160 0.7982
    重复性 10 0.0038 0.0004 0.0194
    下载: 导出CSV

    表  3  石墨烯试样选区③处的单因素方差分析结果

    Table  3.   Results of one-way analysis of variance at section ③ for graphene sample

    测量域自由度(υ平方和(SS均方(MS标准偏差(S总平均值
    区域间90.00640.00090.01150.7504
    重复性100.00810.00060.0252
    下载: 导出CSV
  • [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [2] Wu J, Lin H, Moss D J, et al. Graphene oxide for photonics, electronics and optoelectronics[J]. Nature Reviews Chemistry, 2023, 7(3): 162-183. doi: 10.1038/s41570-022-00458-7
    [3] Xia Y, Gao W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. doi: 10.1002/adfm.202204591
    [4] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6: 183-191. doi: 10.1038/nmat1849
    [5] Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686. doi: 10.1039/C1CS15078B
    [6] Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization[J]. Nature nanotechnology, 2014, 9(10): 730-734. doi: 10.1038/nnano.2014.225
    [7] Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials[J]. National Science Review, 2018, 5(1): 90-101. doi: 10.1093/nsr/nwx055
    [8] Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry[J]. Nature materials, 2019, 18(6): 520-524. doi: 10.1038/s41563-019-0341-4
    [9] Barkan T. Graphene: the hype versus commercial reality[J]. Nature nanotechnology, 2019, 14(10): 904-906. doi: 10.1038/s41565-019-0556-1
    [10] Pollard A J. Metrology for graphene and 2D materials[J]. Measurement Science and Technology, 2016, 27(9): 092001. doi: 10.1088/0957-0233/27/9/092001
    [11] Wyss K M, Luong D X, Tour J M. Large-scale syntheses of 2D materials: flash joule heating and other methods[J]. Advanced materials, 2022, 34(8): 2106970. doi: 10.1002/adma.202106970
    [12] Liu W, Lv J, Peng L, et al. Graphene charge-injection photodetectors[J]. Nature Electronics, 2022, 5(5): 281-288. doi: 10.1038/s41928-022-00755-5
    [13] Das S, Pandey D, Thomas J, et al. The role of graphene and other 2D materials in solar photovoltaics[J]. Advanced Materials, 2019, 31(1): 1802722. doi: 10.1002/adma.201802722
    [14] Carey T, Alhourani A, Tian R, et al. Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage[J]. npj 2D Materials and Applications, 2022, 6(1): 3. doi: 10.1038/s41699-021-00279-0
    [15] Dhanola A, Gajrani K K. Novel insights into graphene-based sustainable liquid lubricant additives: A comprehensive review[J]. Journal of Molecular Liquids, 2023: 122523.
    [16] Sekhon S S, Kaur P, Kim Y H, et al. 2D graphene oxide–aptamer conjugate materials for cancer diagnosis[J]. npj 2D Materials and Applications, 2021, 5(1): 21. doi: 10.1038/s41699-021-00202-7
    [17] Du J, Pei S, Ma L, et al. 25th anniversary article: carbon nanotube-and graphene-based transparent conductive films for optoelectronic devices[J]. Advanced materials, 2014, 26(13): 1958-1991. doi: 10.1002/adma.201304135
    [18] Jang H, Park Y J, Chen X, et al. Graphene-based flexible and stretchable electronics[J]. Advanced Materials, 2016, 28(22): 4184-4202. doi: 10.1002/adma.201504245
    [19] Yang Y, Wei Y, Guo Z, et al. From materials to devices: Graphene toward practical applications[J]. Small Methods, 2022, 6(10): 2200671. doi: 10.1002/smtd.202200671
    [20] Duan K, Zhu F, Tang K, et al. Effects of chirality and number of graphene layers on the -mechanical properties of graphene-embedded copper nanocomposites[J]. Computational Materials Science, 2016, 117: 294-299. doi: 10.1016/j.commatsci.2016.02.007
    [21] Munoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition, 2013, 19(10-11-12): 297-322. doi: 10.1002/cvde.201300051
    [22] Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. doi: 10.1039/C5TA00252D
    [23] Yazdi G R, Iakimov T, Yakimova R. Epitaxial graphene on SiC: a review of growth and characterization[J]. Crystals, 2016, 6(5): 53. doi: 10.3390/cryst6050053
    [24] Guo C, Cai Y, Zhao H, et al. Efficient synthesis of graphene oxide by Hummers method assisted with an electric field[J]. Materials Research Express, 2019, 6(5): 055602. doi: 10.1088/2053-1591/ab023d
    [25] Shearer C J, Slattery A D, Stapleton A J, et al. Accurate thickness measurement of graphene[J]. Nanotechnology, 2016, 27(12): 125704. doi: 10.1088/0957-4484/27/12/125704
    [26] Bruna M, Borini S. Assessment of graphene quality by quantitative optical contrast analysis[J]. Journal of Physics D: Applied Physics, 2009, 42(17): 175307. doi: 10.1088/0022-3727/42/17/175307
    [27] Bayle M, Reckinger N, Felten A, et al. Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast[J]. Journal of Raman Spectroscopy, 2018, 49(1): 36-45. doi: 10.1002/jrs.5279
    [28] Ouyang W, Liu X Z, Li Q, et al. Optical methods for determining thicknesses of few-layer graphene flakes[J]. Nanotechnology, 2013, 24(50): 505701. doi: 10.1088/0957-4484/24/50/505701
    [29] Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X
    [30] Yoon D, Moon H, Cheong H, et al. Variations in the Raman spectrum as a function of the number of graphene layers[J]. J. Korean Phys. Soc, 2009, 55(3): 1299-1303
    [31] Mondal M, Dash A K, Singh A. Optical microscope based universal parameter for identifying layer number in two-dimensional materials[J]. ACS nano, 2022, 16(9): 14456-14462. doi: 10.1021/acsnano.2c04833
    [32] Li X L, Qiao X F, Han W P, et al. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates[J]. Nanoscale, 2015, 7(17): 8135-8141. doi: 10.1039/C5NR01514F
    [33] Ozaki Y, Šašic S. Introduction to Raman spectroscopy[J]. Pharmaceutical Applications of Raman Spectroscopy, 2008: 1-28.
    [34] GB/T 40069-2021. 纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法[S]. 北京: 中国标准出版社, 2021
    [35] Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X
    [36] Kumar N, Salehiyan R, Chauke V, et al. Top-down synthesis of graphene: A comprehensive review[J]. FlatChem, 2021, 27: 100224 doi: 10.1016/j.flatc.2021.100224
    [37] GB/T 15000.5-2023. 标准样品工作导则 第5部分: 质量控制样品的内部研制[S]. 北京: 中国标准出版社, 2023
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  42
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 录用日期:  2024-08-13
  • 修回日期:  2024-07-29
  • 网络出版日期:  2024-09-11

目录

    /

    返回文章
    返回