Research and Implementation of a Fully Intelligent Pressure Gauge Calibration System
-
摘要: 为提升压力表的检定效率并减少读数误差,研制了一套全智能化压力表检定系统,该系统由一体化AI识别模型、控制软件和检定装置组成,实现了压力表检定流程的全智能化、自动化。系统的识别模型是基于深度学习网络框架,融合YOLO检测模型、 Paddle OCR模型、文本分类器以及相邻角度读数算法组成的一体化AI模型,不仅可识别压力表图像中指针的读数信息,还可识别压力表的生产厂家、生产编号、精确度等级和单位等基本信息;控制软件基于多线程、异步通信的结构而设计,支持同时与检定装置的多个硬件通信,控制多个压力表同时检定,且支持检定图像和数据的保存,便于后期复核和追溯,还支持将检定结果同步至OA系统,自动化打印检定证书。通过实验验证,结果表明该系统能够准确可靠地同时检定1~6台压力表,相比于人工检定和其他自动化检定系统,该系统智能化程度更大、检定效率更高、读数误差更小,具有实际应用和推广意义。Abstract: To enhance the efficiency of pressure gauge calibration and reduce reading errors, a fully intelligent pressure gauge calibration system has been developed. The system consists of an integrated AI recognition model, control software, and calibration devices, achieving full automation and intelligence in the pressure gauge calibration process. The system's recognition model is based on a deep learning network framework, integrating the YOLO detection model, Paddle OCR model, text classifier, and adjacent angle reading algorithm. This model can not only identify the pointer readings from pressure gauge images but also capture essential information such as manufacturer, serial number, accuracy class, and units. The control software is designed with a multi-threaded and asynchronous communication structure, supporting communication with multiple hardware components of the calibration device and enabling the simultaneous calibration of multiple pressure gauges. It also allows for the storage of calibration images and data for review and traceability and supports the automatic synchronization of calibration results with the OA system, along with automatic certificate printing. Experimental validation demonstrates that the system can accurately and reliably calibrate 1–6 pressure gauges simultaneously. Compared with manual calibration and other automated systems, this system offers a higher degree of intelligence, greater efficiency, and reduced reading errors, with promising applications and promotion value.
-
Key words:
- metrology /
- pressure gauge /
- intelligent calibration /
- AI model /
- deep learning network /
- automatic control
-
表 1 一体化AI模型在不同光照强度下的实验结果
Table 1. Experimental results of integrated AI model under different lighting intensities
型号 光照强度 生产厂家 生产编号 单位 精确度等级 示值 准确率 ① 弱光 √ √ √ √ √ 95.78% 正常光 √ √ √ √ √ 97.43% 强光 √ √ √ √ √ 96.89% ② 弱光 √ √ √ √ √ 96.33% 正常光 √ √ √ √ √ 98.56% 强光 √ √ √ √ √ 96.57% ③ 弱光 √ √ √ √ √ 95.06% 正常光 √ √ √ √ √ 96.12% 强光 × × √ √ × 84.25% ④ 弱光 √ √ √ √ √ 82.63% 正常光 √ √ √ √ √ 95.32% 强光 × × √ √ × 93.94% -
[1] 连兆杰. 基于机器视觉技术的指针式压力表检定系统的研究[D]. 沈阳: 沈阳工业大学, 2016. [2] 石孟曦. 基于机器视觉的指针式压力表读数识别算法研究[D]. 兰州: 兰州交通大学, 2022. [3] 杜静. 指针式压力表视觉识别技术研究[D]. 大连: 大连工业大学, 2020. [4] 伍开宇, 朱海清, 沈晓东, 等. 基于机器视觉的指针式压力表智能检定系统研究[J]. 计量学报, 2022, 43(11): 1450-1455. [5] 林鸿正, 张斌, 赵成龙, 等. 基于深度学习的指针式压力表读数方法研究[J]. 现代电子技术, 2024, 47(7): 165-169. [6] 卢建. 基于视觉检测与相机定位的指针式压力表自动检定系统研究[D]. 镇江: 江苏大学, 2023. [7] 熊伟丽, 周寰, 徐保国. 指针式压力表自动检定系统的设计与实现[J]. 传感器与微系统, 2009, 28(8): 105-107. [8] 李祖贺, 刘嘉, 薛冰, 等. 面向自动校验系统的指针式压力表读数识别[J]. 计算机工程与应用, 2016, 52(23): 213-219. doi: 10.3778/j.issn.1002-8331.1606-0079 [9] 杜静, 魏鸿磊, 樊双蛟, 等. 基于HOUGH变换的指针式压力表自动识别算法[J]. 机床与液压, 2020, 48(11): 70-75. doi: 10.3969/j.issn.1001-3881.2020.11.014 [10] 吴苓芝, 李天赋, 王传钦, 等. 指针式仪表通用读数识别方法及系统[J]. 工业控制计算机, 2024, 37(3): 10-12. [11] 李倩. 计算机视觉识别技术在压力表检定中的应用[J]. 计量技术, 2017(11): 58-60. [12] 吕张成, 张建业, 陈哲钥, 等. 基于深度学习的工业零件识别与抓取实时检测算法[J]. 机床与液压, 2023, 51(24): 33-38. [13] 王鹏. 弹性元件式一般压力表检定规程剖析要点研究[J]. 中国质量监管, 2024(2): 108-109. [14] 盛哲, 陈安德, 刘峰, 等. 机器视觉识别系统在空气呼吸器压力表检测中的应用[J]. 石油工业技术监督, 2018, 34(9): 30-34. doi: 10.3969/j.issn.1004-1346.2018.09.010 [15] 刘晓洲, 龚演平. 基于图像处理的断路器压力表计识别技术研究[J]. 技术与市场, 2019, 26(11): 102-104. [16] 屠岩. 高压多工位指针压力表智能检测系统研究[D]. 无锡: 江南大学, 2023. [17] 高华宙. 指针式仪表读数自动识别算法及系统研究[J]. 机械管理开发, 2023, 38(1): 93-95. [18] 韦桂樱. 基于机器视觉与检定软件的压力表自动检定装置[J]. 轻工标准与质量, 2022(5): 63-65. [19] 苏一鸣, 杨水旺, 张琦, 等. 基于LabVIEW机器视觉的压力表自动化检定装置设计[J]. 计测技术, 2020, 40(1): 57-60. [20] 卓海波. 基于刻度线特征的指示表读数智能识别方法[D]. 呼和浩特: 内蒙古工业大学, 2020. [21] 林飞振, 梁伟龙. 20MN双泵液压控制系统的研究[J]. 机床与液压, 2021, 49(8): 104-107. [22] 钟文斌, 林飞振. 机动车制动试验台动态校准装置[J]. 自动化与信息工程, 2019, 40(3): 12-15. [23] 白俊卿, 常文文, 程国建, 等. 基于改进的YOLOv7油田井场压力表小目标识别[J]. 西安石油大学学报(自然科学版), 2024, 39(2): 120-127. [24] 石孟曦, 张文红, 张磊, 等. 基于LSD和改进YOLOv2的压力表识读方法[J]. 计算机仿真, 2023, 40(5): 284-288,294. doi: 10.3969/j.issn.1006-9348.2023.05.052 [25] 张倬, 汤灏, 罗高, 等. 基于深度学习的自校准雷达测速系统的研究[J]. 计量科学与技术, 2023, 67(10): 8-18,76. [26] Hussain M. Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo[J]. IEEE Access, 2024, 12: 42816-42833. doi: 10.1109/ACCESS.2024.3378568 [27] Kang L, Lu Z, Meng L, et al. YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection[J]. Expert Systems with Applications, 2024, 237: 121209. doi: 10.1016/j.eswa.2023.121209 [28] Deng Y, Teng S, Fei L, et al. A multifeature learning and fusion network for facial age estimation[J]. Sensors, 2021, 21(13): 4597. doi: 10.3390/s21134597 [29] Lu Z, Du C, Jiang Y, et al. Quantitative evaluation of deep learning frameworks in heterogeneous computing environment[J]. CCF Transactions on High Performance Computing, 2024, 6(1): 94-111. doi: 10.1007/s42514-023-00168-6 [30] 张善华. 基于PaddlePaddle的钢板侧喷码识别技术研究与应用[D]. 济南: 山东大学, 2023.