留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层热膜的壁面剪切应力试验研究

付政伟 赵龙辉 张琦 杨水旺 江宇璇 陈小婷

付政伟,赵龙辉,张琦,等. 基于双层热膜的壁面剪切应力试验研究[J]. 计量科学与技术,2024, 68(11): 34-41 doi: 10.12338/j.issn.2096-9015.2024.0242
引用本文: 付政伟,赵龙辉,张琦,等. 基于双层热膜的壁面剪切应力试验研究[J]. 计量科学与技术,2024, 68(11): 34-41 doi: 10.12338/j.issn.2096-9015.2024.0242
FU Zhengwei, ZHAO Longhui, ZHANG Qi, YANG Shuiwang, JIANG Yuxuan, CHEN Xiaoting. Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0242
Citation: FU Zhengwei, ZHAO Longhui, ZHANG Qi, YANG Shuiwang, JIANG Yuxuan, CHEN Xiaoting. Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0242

基于双层热膜的壁面剪切应力试验研究

doi: 10.12338/j.issn.2096-9015.2024.0242
基金项目: 中国航天科工飞航技术研究院技术基础课题(118002593102E)。
详细信息
    作者简介:

    付政伟(1998-),北京振兴计量测试研究所助理工程师,研究方向:检测技术、传感技术、力学计量,邮箱:fu_zw942@163.com

  • 中图分类号: TB937

Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film

  • 摘要: 流体壁面剪切应力是精确研究掌握流体流经固体壁面摩擦阻力的直接参量,是评估飞行器设备性能和表面摩擦分布的一个重要参数。精确测量壁面剪切应力对获取飞行器的粘性阻力、优化飞行器结构具有重要意义。针对基于双层热膜技术的壁面剪切应力测量方法的验证,设计了长管道空气流动壁面剪切应力试验平台,以验证该方法测量壁面剪切应力的准确性,同时,验证了在不同温差条件下的双层热膜传感器测量壁面剪切应力的准确性和可重复性。在ΔT = 30℃、40℃、50℃、60℃四种温差条件,测量得到的最大壁面剪切应力为1.27 Pa,壁面剪切应力测量的相对合成不确定度为0.50%,测量相对误差小于4%。
  • 图  1  双层热膜的壁面剪切应力测试基本原理

    Figure  1.  Basic principle of wall shear stress measurement using a double-layer hot film

    图  2  长管道壁面剪切应力测试试验台示意图

    Figure  2.  Schematic diagram of the long pipeline wall shear stress test platform

    图  3  管流受力分析示意图

    Figure  3.  Schematic diagram of force analysis in pipe flow

    图  4  长圆管道双层热膜传感器布置图

    Figure  4.  Layout of double-layer hot film sensors in the long circular pipeline

    图  5  试验现场布置

    Figure  5.  Test site layout

    图  6  压力测量系统界面

    Figure  6.  Interface of the pressure measurement system

    图  7  试验辅助设备

    Figure  7.  Test auxiliary equipment

    图  8  不同温差条件下壁面剪切应力和热量的关系

    Figure  8.  Relationship between wall shear stress and heat transfer under different temperature differences

    图  9  不同温差条件下壁面剪切应力和速度的关系

    Figure  9.  Relationship between wall shear stress and velocity under different temperature differences

    图  10  50℃温差可重复性试验

    Figure  10.  Repeatability test of wall shear stress measurement at a temperature difference of 50℃

    表  1  不同温差、流速下,压差、热膜传感器输出电压的测量结果

    Table  1.   Measurement results of pressure difference and output voltage of the hot film sensor under different temperature differences and flow velocities

    温差 气流速度 0 m/s 5 m/s 10 m/s 15 m/s 20 m/s
    30℃ CH-1 0.1238 63.1883 −282.991 −591.105 −965.371
    CH-2 0.1494 −77.651 −342.969 −725.975 1205.04
    进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 0 4.856816 9.90277 14.87601 19.87414
    CH-13 −0.806 −100.907 −473.515 −991.698 1643.104
    CH-14 0.643 −102.486 −492.095 1017.240 1690.515
    压差P / Pa -1.449 1.579 18.580 25.542 47.411
    CH-15 / V 2.521 2.856 3.133 3.275 3.395
    CH-16 / V 2.623 2.985 3.312 3.496 3.656
    40℃ CH-1 1.0515 60.6715 −218.727 −597.207 −973.106
    CH-2 0.1896 76.6185 −279.339 −733.083 1214.11
    进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 1.18522 5.099917 9.951917 14.93193 19.93038
    CH-13 5.684 −94.237 −379.712 −995.760 1653.024
    CH-14 0.712 −100.795 −395.600 1025.059 1703.907
    压差P / Pa 4.972 6.559 15.888 29.299 50.883
    CH-15 / V 2.905 3.132 3.361 3.543 3.668
    CH-16 / V 2.975 3.253 3.539 3.786 3.962
    50℃ CH-1 1.5502 72.3676 −294.16 −600.879 −971.36
    CH-2 0.6829 87.4618 −352.859 −739.035 1210.8
    进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 0 4.961952 9.7971 15.05706 19.86541
    CH-13 4.691 −110.223 −483.613 1006.016 1646.181
    50℃ CH-14 −0.556 −111.138 −502.831 1036.128 1692.156
    压差P / Pa 5.247 0.915 19.218 30.112 45.974
    CH-15 / V 2.945 3.320 3.612 3.779 3.910
    CH-16 / V 2.972 3.391 3.750 3.977 4.165




    60℃
    CH-1 1.9744 77.7907 −308.475 −614.737 −988.112
    CH-2 2.7022 92.3368 −371.033 −752.168 1232.9
    进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 0 4.871152 10.11488 15.01849 20.08812
    CH-13 4.939 −116.847 −508.751 1022.936 1679.404
    CH-14 8.610 −116.953 −517.920 1045.023 1721.269
    压差P / Pa -3.671 0.105 9.169 22.087 41.865
    CH-15 / V 3.046 3.491 3.792 3.968 4.107
    CH-16 / V 3.057 3.542 3.932 4.171 4.377
    下载: 导出CSV

    表  2  不同温差、流速测量数据处理过程

    Table  2.   Data processing procedure for different temperature differences and flow velocities

    温差 / ΔT 气流速度 / m/s RtW / mΩ Q / J Q / ∆T - offsetoffset = 0.75Q0 τW / Pa τWW0 / Pa
    30℃00.20579350.0566470.0004720555-0.036221250.00000000
    50.20579350.0733650.00102932810.039470000.07569125
    100.20579350.0903120.00159421720.464502250.50072350
    150.20579350.1005990.00193714180.638548000.67476925
    200.20579350.1100230.00225127971.185274001.22149525
    40℃00.2175580.0770160.00048134870.124301250.00000000
    50.2175580.0920850.00085806970.163973000.03967175
    100.2175580.1089710.00128024010.397198000.27289675
    150.2175580.124760.00167494600.732472250.60817100
    200.2175580.1365770.00197036891.272064751.14776350
    50℃00.22932250.0810040.00040501850.131175250.00000000
    50.22932250.1054530.00089399600.02286700-0.10830825
    100.22932250.1290120.00136519400.480450500.34927525
    150.22932250.1450790.00168652560.752806000.62163075
    200.22932250.1591070.00196708011.149360751.01818550
    60℃00.2410870.0901480.0003756160-0.091782250.00000000
    50.2410870.1210070.00088994140.002635750.09441800
    100.2410870.1490560.00135742360.229230750.32101300
    150.2410870.1677760.00166942500.552177250.64395950
    200.2410870.1847370.00195209661.046618251.13840050
    下载: 导出CSV

    表  3  试验值测量不确定度评定分析表

    Table  3.   Evaluation and analysis table for uncertainty in the measurement of test values

    参数单位典型值测量误差测量不确定度
    μkg/(ms)1.91×10−5± 2.67×10−8u(μ) = 1.54×10−8
    kW/(m·K)0.03± 1.80×10−5u(k) = 1.04×10−5
    ρkg/m31.11± 8.80×10−4u(ρ) = 5.08×10−4
    cpJ/(kg·k)1006.51± 1.00×10−2u(cp) = 5.77×10−3
    wmm6.12± 1.00×10−2u(w) = 5.77×10−3
    lmm1.24± 1.00×10−2u(l) = 5.77×10−3
    EV5.00± 5.00×10−4u(E) = 2.89×10−4
    RuΩ0.20± 2.00×10−4u(Ru) = 1.15×10−4
    ΔT30/40/50/60± 6.00×10−2uT) = 3.46×10−2
    下载: 导出CSV
  • [1] Naughton J W, Sheplak M. Modern developments in shear-stress measurement[J]. Progress in Aerospace Sciences, 2002, 38(6): 515-570.
    [2] 高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2022, 40(3): 1-24. doi: 10.7638/kqdlxxb-2021.0303
    [3] Sheplak M, Cattafesta L, Nishida T, et al. MEMS shear stress sensors: promise and progress[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004.
    [4] 付政伟, 杨水旺, 张琦, 等. 浮动元件壁面剪切应力传感器研究进展[J]. 计测技术, 2023, 43(6): 20-29. doi: 10.11823/j.issn.1674-5795.2023.06.02
    [5] Abbas A, Bugeda G, Ferrer E, et al. Drag reduction via turbulent boundary layer flow control[J]. Sci. China Technol. Sci, 2017, 60(9): 1281-1290. doi: 10.1007/s11431-016-9013-6
    [6] Sheplak M, Cattafesta L, Nishida T. MEMS shear stress sensors: promise and progress[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004.
    [7] 雷强, 高杨, 王雄. MEMS壁面剪切应力传感器研究进展[J]. 中国测试, 2016, 42(7): 1-8. doi: 10.11857/j.issn.1674-5124.2016.07.001
    [8] 周厚祚. 埋藏式SiC高温剪应力传感器的研究[D]. 厦门: 厦门大学, 2019.
    [9] Pan T, HYMAN D, MEHREGANY M, et al. Micro-fabricated shear stress sensors[J]. AIAA Journal, 1999, 37(1): 66-72. doi: 10.2514/2.665
    [10] Hyman D, Pan T, Reshotko E, et al. Micro-fabricated shear stress sensors[J]. AIAA Journal, 1999, 37(1): 73-78. doi: 10.2514/2.666
    [11] Patel M P, Reshotko E, Hyman D. Micro-fabricated shear-stress sensors[J]. AIAA Journal, 2002, 40(8): 1582-1588. doi: 10.2514/2.1827
    [12] Zong Z. MEMS floating element sensor array for wall shear stress measurement under a turbulent boundary layer[D]. Massachusetts: Tufts University, 2014.
    [13] Zhao Z, Long K R, Gallman J, et al. Flow testing of a MEMS floating element shear stress sensor[C]. 52nd American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting, 2014.
    [14] 刘玄鹤. 基于双层热膜的免标定摩阻测量方法研究[D]. 大连: 大连理工大学, 2021.
    [15] 王昊. 基于双层热膜技术的壁面剪切应力测量方法研究[D]. 大连: 大连理工大学, 2021.
    [16] 孙宝云, 马炳和. 高性能柔性热膜微传感器及其在流体壁面剪应力测量中的应用[J]. 金属加工(冷加工), 2022(9): 96.
    [17] Wang D Y, Deng J J, Yan Y C, et al. Temperature dependence of constant current hot-film sensors: Investigation with application to temperature correction for wall-shear stress measurements[J]. Flow Measurement and Instrumentation, 2024, 97: 102616. doi: 10.1016/j.flowmeasinst.2024.102616
    [18] 刘丹. 免标定壁面剪应力测量技术研究[J]. 科技创新与应用, 2023, 13(34): 188-192.
    [19] Lundstrom H. Investigation of heat transfer from thin wires in air and a new method for temperature correction of hot-wire anemometers[J]. Exp. Therm. Fluid Sci. 2021, 128: 110403.
    [20] Kuchler A, Bodenschatz D, Lohse D, et al. Fabrication of freestanding Pt nanowires for use as thermal anemometry probes in turbulence measurements[J]. Microsyst Nano, 2021, 7: 28. doi: 10.1038/s41378-021-00255-0
    [21] Brunier C F, Barros D C, Pique A, et al. Thermal response of a nanoscale hot-wire in subsonic and supersonic flows[J]. Exp. Fluid, 2023, 64(1): 8. doi: 10.1007/s00348-022-03545-z
    [22] 刘祺, 夏明嫣, 庞鹏, 等. 恒温模式驱动下的二维微机电系统热膜式壁面切应力传感器水下标定试验研究[J]. 海洋工程, 2024(5): 1-10.
    [23] Ligęza P. Method of testing fast-changing and pulsating flows by means of a hotwire anemometer with simultaneous measurement of voltage and current of the sensor[J]. Measurement, 2022, 187: 110291. doi: 10.1016/j.measurement.2021.110291
    [24] Xiong W, Zhu C, Guo D, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021, 90: 106550. doi: 10.1016/j.nanoen.2021.106550
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  53
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-19
  • 录用日期:  2024-08-21
  • 修回日期:  2024-08-19
  • 网络出版日期:  2024-09-04

目录

    /

    返回文章
    返回