Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film
-
摘要: 流体壁面剪切应力是精确研究掌握流体流经固体壁面摩擦阻力的直接参量,是评估飞行器设备性能和表面摩擦分布的一个重要参数。精确测量壁面剪切应力对获取飞行器的粘性阻力、优化飞行器结构具有重要意义。针对基于双层热膜技术的壁面剪切应力测量方法的验证,设计了长管道空气流动壁面剪切应力试验平台,以验证该方法测量壁面剪切应力的准确性,同时,验证了在不同温差条件下的双层热膜传感器测量壁面剪切应力的准确性和可重复性。在ΔT = 30℃、40℃、50℃、60℃四种温差条件,测量得到的最大壁面剪切应力为1.27 Pa,壁面剪切应力测量的相对合成不确定度为0.50%,测量相对误差小于4%。
-
关键词:
- 计量学 /
- 双层热膜 /
- 流体壁面剪切应力测量 /
- 长管道空气流动试验平台 /
- 试验验证 /
- 不确定度评定
Abstract: The shear stress of fluid wall is a direct parameter to accurately study the frictional resistance of fluid flowing through solid wall, and is a key parameter to evaluate the performance of aircraft equipment and surface friction distribution. Accurate measurement of wall shear stress is of great significance to obtain the viscous resistance of aircraft and optimize the structure of aircraft.. Aiming at the verification of the wall shear stress measurement method based on double-layer hot film technology, a long pipeline air flow wall shear stress test platform was designed to verify the accuracy of the method to measure wall shear stress, and also to verify the stability and repeatability of the double-layer hot film sensor to measure wall shear stress under different temperature differences. At ΔT = 30℃, 40℃, 50℃ and 60℃, the maximum measured wall shear stress is 1.27 Pa, the relative synthetic uncertainty of wall shear stress measurement is 0.50%, and the relative error is less than 4%. -
表 1 不同温差、流速下,压差、热膜传感器输出电压的测量结果
Table 1. Measurement results of pressure difference and output voltage of the hot film sensor under different test conditions
温差 气流速度 0 m/s 5 m/s 10 m/s 15 m/s 20 m/s 30℃ CH-1 0.1238 − 63.1883 −282.991 −591.105 −965.371 CH-2 0.1494 −77.651 −342.969 −725.975 − 1205.04 进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 0 4.856816 9.90277 14.87601 19.87414 CH-13 −0.806 −100.907 −473.515 −991.698 − 1643.104 CH-14 0.643 −102.486 −492.095 − 1017.240 − 1690.515 压差∆P / Pa -1.449 1.579 18.580 25.542 47.411 CH-15 / V 2.521 2.856 3.133 3.275 3.395 CH-16 / V 2.623 2.985 3.312 3.496 3.656 40℃ CH-1 1.0515 − 60.6715 −218.727 −597.207 −973.106 CH-2 0.1896 − 76.6185 −279.339 −733.083 − 1214.11 进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 1.18522 5.099917 9.951917 14.93193 19.93038 CH-13 5.684 −94.237 −379.712 −995.760 − 1653.024 CH-14 0.712 −100.795 −395.600 − 1025.059 − 1703.907 压差∆P / Pa 4.972 6.559 15.888 29.299 50.883 CH-15 / V 2.905 3.132 3.361 3.543 3.668 CH-16 / V 2.975 3.253 3.539 3.786 3.962 50℃ CH-1 − 1.5502 − 72.3676 −294.16 −600.879 −971.36 CH-2 0.6829 − 87.4618 −352.859 −739.035 − 1210.8 进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 0 4.961952 9.7971 15.05706 19.86541 CH-13 4.691 −110.223 −483.613 − 1006.016 − 1646.181 50℃ CH-14 −0.556 −111.138 −502.831 − 1036.128 − 1692.156 压差∆P / Pa 5.247 0.915 19.218 30.112 45.974 CH-15 / V 2.945 3.320 3.612 3.779 3.910 CH-16 / V 2.972 3.391 3.750 3.977 4.165
60℃CH-1 − 1.9744 − 77.7907 −308.475 −614.737 −988.112 CH-2 2.7022 − 92.3368 −371.033 −752.168 − 1232.9 进口流速Vin /$ {\text{m}} \cdot {{\text{s}}^{ - 1}} $ 0 4.871152 10.11488 15.01849 20.08812 CH-13 4.939 −116.847 −508.751 − 1022.936 − 1679.404 CH-14 8.610 −116.953 −517.920 − 1045.023 − 1721.269 压差∆P / Pa -3.671 0.105 9.169 22.087 41.865 CH-15 / V 3.046 3.491 3.792 3.968 4.107 CH-16 / V 3.057 3.542 3.932 4.171 4.377 表 2 不同温差、流速测量数据处理过程
Table 2. Processing process of measurement data of different temperature differences and flow rates
温差 / ΔT 气流速度 / m/s RtW / mΩ Q / J Q / ∆T - offset(offset = 0.75Q0) τW / Pa τW-τW0 / Pa 30℃ 0 0.2057935 0.056647 0.0004720555 - 0.03622125 0.00000000 5 0.2057935 0.073365 0.0010293281 0.03947000 0.07569125 10 0.2057935 0.090312 0.0015942172 0.46450225 0.50072350 15 0.2057935 0.100599 0.0019371418 0.63854800 0.67476925 20 0.2057935 0.110023 0.0022512797 1.18527400 1.22149525 40℃ 0 0.217558 0.077016 0.0004813487 0.12430125 0.00000000 5 0.217558 0.092085 0.0008580697 0.16397300 0.03967175 10 0.217558 0.108971 0.0012802401 0.39719800 0.27289675 15 0.217558 0.12476 0.0016749460 0.73247225 0.60817100 20 0.217558 0.136577 0.0019703689 1.27206475 1.14776350 50℃ 0 0.2293225 0.081004 0.0004050185 0.13117525 0.00000000 5 0.2293225 0.105453 0.0008939960 0.02286700 - 0.10830825 10 0.2293225 0.129012 0.0013651940 0.48045050 0.34927525 15 0.2293225 0.145079 0.0016865256 0.75280600 0.62163075 20 0.2293225 0.159107 0.0019670801 1.14936075 1.01818550 60℃ 0 0.241087 0.090148 0.0003756160 - 0.09178225 0.00000000 5 0.241087 0.121007 0.0008899414 0.00263575 0.09441800 10 0.241087 0.149056 0.0013574236 0.22923075 0.32101300 15 0.241087 0.167776 0.0016694250 0.55217725 0.64395950 20 0.241087 0.184737 0.0019520966 1.04661825 1.13840050 表 3 试验值测量不确定度评定分析表
Table 3. Evaluation and analysis table of uncertainty in measurement of test values
参数 单位 典型值 测量误差 测量不确定度 μ kg/(ms) 1.91×10−5 ± 2.67×10−8 u(μ) = 1.54×10−8 k W/(m·K) 0.03 ± 1.80×10−5 u(k) = 1.04×10−5 ρ kg/m3 1.11 ± 8.80×10−4 u(ρ) = 5.08×10−4 cp J/(kg·k) 1006.51 ± 1.00×10−2 u(cp) = 5.77×10−3 w mm 6.12 ± 1.00×10−2 u(w) = 5.77×10−3 l mm 1.24 ± 1.00×10−2 u(l) = 5.77×10−3 E V 5.00 ± 5.00×10−4 u(E) = 2.89×10−4 Ru Ω 0.20 ± 2.00×10−4 u(Ru) = 1.15×10−4 ΔT ℃ 30/40/50/60 ± 6.00×10−2 u(ΔT) = 3.46×10−2 -
[1] Naughton J W, Sheplak M. Modern developments in shear-stress measurement[J]. Progress in Aerospace Sciences, 2002, 38(6): 515-570. [2] 高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2022, 40(3): 1-24. doi: 10.7638/kqdlxxb-2021.0303 [3] Sheplak M, Cattafesta L, Nishida T, et al. MEMS shear stress sensors: promise and progress[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004. [4] 付政伟, 杨水旺, 张琦, 等. 浮动元件壁面剪切应力传感器研究进展[J]. 计测技术, 2023, 43(6): 20-29. doi: 10.11823/j.issn.1674-5795.2023.06.02 [5] Abbas A, Bugeda G, Ferrer E, et al. Drag reduction via turbulent boundary layer flow control[J]. Sci. China Technol. Sci, 2017, 60(9): 1281-1290. doi: 10.1007/s11431-016-9013-6 [6] Sheplak M, Cattafesta L, Nishida T. MEMS shear stress sensors: promise and progress[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004. [7] 雷强, 高杨, 王雄. MEMS壁面剪切应力传感器研究进展[J]. 中国测试, 2016, 42(7): 1-8. doi: 10.11857/j.issn.1674-5124.2016.07.001 [8] 周厚祚. 埋藏式SiC高温剪应力传感器的研究[D]. 厦门: 厦门大学, 2019. [9] Pan T, HYMAN D, MEHREGANY M, et al. Micro-fabricated shear stress sensors[J]. AIAA Journal, 1999, 37(1): 66-72. doi: 10.2514/2.665 [10] Hyman D, Pan T, Reshotko E, et al. Micro-fabricated shear stress sensors[J]. AIAA Journal, 1999, 37(1): 73-78. doi: 10.2514/2.666 [11] Patel M P, Reshotko E, Hyman D. Micro-fabricated shear-stress sensors[J]. AIAA Journal, 2002, 40(8): 1582-1588. doi: 10.2514/2.1827 [12] Zong Z. MEMS floating element sensor array for wall shear stress measurement under a turbulent boundary layer[D]. Massachusetts: Tufts University, 2014. [13] Zhao Z, Long K R, Gallman J, et al. Flow testing of a MEMS floating element shear stress sensor[C]. 52nd American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting, 2014. [14] 刘玄鹤. 基于双层热膜的免标定摩阻测量方法研究[D]. 大连: 大连理工大学, 2021. [15] 王昊. 基于双层热膜技术的壁面剪切应力测量方法研究[D]. 大连: 大连理工大学, 2021. [16] 孙宝云, 马炳和. 高性能柔性热膜微传感器及其在流体壁面剪应力测量中的应用[J]. 金属加工(冷加工), 2022(9): 96. [17] Wang D Y, Deng J J, Yan Y C, et al. Temperature dependence of constant current hot-film sensors: Investigation with application to temperature correction for wall-shear stress measurements[J]. Flow Measurement and Instrumentation, 2024, 97: 102616. doi: 10.1016/j.flowmeasinst.2024.102616 [18] 刘丹. 免标定壁面剪应力测量技术研究[J]. 科技创新与应用, 2023, 13(34): 188-192. [19] Lundstrom H. Investigation of heat transfer from thin wires in air and a new method for temperature correction of hot-wire anemometers[J]. Exp. Therm. Fluid Sci. 2021, 128: 110403. [20] Kuchler A, Bodenschatz D, Lohse D, et al. Fabrication of freestanding Pt nanowires for use as thermal anemometry probes in turbulence measurements[J]. Microsyst Nano, 2021, 7: 28. doi: 10.1038/s41378-021-00255-0 [21] Brunier C F, Barros D C, Pique A, et al. Thermal response of a nanoscale hot-wire in subsonic and supersonic flows[J]. Exp. Fluid, 2023, 64(1): 8. doi: 10.1007/s00348-022-03545-z [22] 刘祺, 夏明嫣, 庞鹏, 等. 恒温模式驱动下的二维微机电系统热膜式壁面切应力传感器水下标定试验研究[J]. 海洋工程, 2024(5): 1-10. [23] Ligęza P. Method of testing fast-changing and pulsating flows by means of a hotwire anemometer with simultaneous measurement of voltage and current of the sensor[J]. Measurement, 2022, 187: 110291. doi: 10.1016/j.measurement.2021.110291 [24] Xiong W, Zhu C, Guo D, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021, 90: 106550. doi: 10.1016/j.nanoen.2021.106550