留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于标准物质的卤素漏率量值复现方法研究

黄梓宸 尹强 叶丽芳 贾相锐 陈玲 周军红

黄梓宸,尹强,叶丽芳,等. 基于标准物质的卤素漏率量值复现方法研究[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0264
引用本文: 黄梓宸,尹强,叶丽芳,等. 基于标准物质的卤素漏率量值复现方法研究[J]. 计量科学与技术,待出版. doi: 10.12338/j.issn.2096-9015.2024.0264
HUANG Zichen, YIN Qiang, YE Lifang, JIA Xiangrui, CHEN Ling, ZHOU Junhong. Research on the Method for Reproducing Halogen Leak Rate Based on Reference Material[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0264
Citation: HUANG Zichen, YIN Qiang, YE Lifang, JIA Xiangrui, CHEN Ling, ZHOU Junhong. Research on the Method for Reproducing Halogen Leak Rate Based on Reference Material[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0264

基于标准物质的卤素漏率量值复现方法研究

doi: 10.12338/j.issn.2096-9015.2024.0264
基金项目: 广东省市场监督管理局科技项目(2024ZC07)。
详细信息
    作者简介:

    黄梓宸(1991-),广东省计量科学研究院工程师,研究方向:化学计量、碳计量、标准物质研究,邮箱:hzc@scm.com.cn

Research on the Method for Reproducing Halogen Leak Rate Based on Reference Material

  • 摘要: 卤素检漏仪校准所使用的标准漏孔一直以来存在不确定度较大的问题。为了降低卤素漏率量值的不确定度,提出了基于气体标准物质的漏率量值复现方法。经公式推导得到了在特定条件下气体浓度与漏率的转换关系,并通过实验进行了验证。结果表明使用卤素检漏仪测量复现漏率与标准漏孔漏率的一致性良好(两组实验归一化偏差为0.41及0.21)。分析了标准物质复现漏率的不确定度来源,包括气体标准物质、吸入流量、温度、压力等,计算并合成各分量,最终得到基于气体标准物质的复现漏率相对扩展不确定度为2.5%(k=2),证明使用气体标准物质进行漏率复现的不确定度水平显著低于常见标准漏孔,同时还具有良好的可操作性。
  • 图  1  装置连接示意图

    Figure  1.  Schematic diagram of instrument connection

    图  2  漏率测量结果

    Figure  2.  Measurement results of leak rate

    图  3  不确定度来源分析

    Figure  3.  Analysis of uncertainty sources

    表  1  检漏仪吸入流量测量结果

    Table  1.   Measurement results of leak detector inhale flow

    测量次数 测量结果 /
    (mL·min−1)
    测量次数 测量结果 /
    (mL·min−1)
    1 59.2 6 59.6
    2 59.0 7 59.4
    3 59.6 8 59.8
    4 58.9 9 60.5
    5 59.6 10 59.6
    下载: 导出CSV

    表  2  实验结果汇总

    Table  2.   Summary of experimental results

    测量对象 标准值/
    (g·a−1)
    实测值/
    (g·a−1)
    标准偏差/
    (g·a−1)
    示值误差/
    (g·a−1)
    漏孔1 3.57 3.6 0.074 +0.03
    标气1 3.86 3.8 0.052 −0.06
    漏孔2 10.76 10.8 0.103 +0.04
    标气2 10.93 11.1 0.063 +0.17
    下载: 导出CSV

    表  3  测量不确定度计算结果

    Table  3.   Calculation results of measurement uncertainty

    测量对象 u漏率/
    (g·a−1)
    u重复性/
    (g·a−1)
    u分辨力/
    (g·a−1)
    u测量/
    (g·a−1)
    漏孔1 0.089 0.023 0.029 0.094
    标气1 0.048 0.016 0.029 0.056
    漏孔2 0.269 0.033 0.029 0.271
    标气2 0.137 0.020 0.029 0.140
    下载: 导出CSV

    表  4  归一化偏差计算结果

    Table  4.   Calculation results of normalized deviation

    测量对象 示值误差/
    (g·a−1)
    u测量/
    (g·a−1)
    U测量/
    (g·a−1)
    En
    漏孔1 +0.03 0.094 0.19 0.41
    标气1 −0.06 0.056 0.11
    漏孔2 +0.04 0.271 0.54 0.21
    标气2 +0.17 0.140 0.28
    下载: 导出CSV
  • [1] HE Y, CHEN W, ZHAO Y, et al. Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2022, 49: 19-57.
    [2] ROY Z, HALDER G. Replacement of halogenated refrigerants towards sustainable cooling system: A review[J]. Chemical Engineering Journal Advances, 2020, 3: 100027. doi: 10.1016/j.ceja.2020.100027
    [3] 高润淼, 宋孟杰, 高恩元, 等. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7. doi: 10.11949/0438-1157.20221644
    [4] 石劲鹏, 胡国涛, 李白玉, 等. 含氟制冷剂的发展研究[J]. 生态产业科学与磷氟工程, 2024, 39(7): 52-55.
    [5] 张迪, 郭智恺, 于万金, 等. 新型低GWP制冷剂在-100~200℃的应用研究进展[J]. 制冷学报, 2024, 45(3): 23-37. doi: 10.3969/j.issn.0253-4339.2024.03.023
    [6] 付淑娥, 郭岳达. 空调制冷剂与全球气候变暖[J]. 生态经济, 2022, 38(12): 5-8.
    [7] SHAJI E, SARATH K V, SANTOSH M, et al. Fluoride contamination in groundwater: A global review of the status, processes, challenges, and remedial measures[J]. Geoscience Frontiers, 2024, 15(2): 101734. doi: 10.1016/j.gsf.2023.101734
    [8] LIM Y K, PHANG S M, ABDUL RAHMAN N, et al. Halocarbon emissions from marine phytoplankton and climate change[J]. International Journal of Environmental Science and Technology, 2017, 14(6): 1355-1370. doi: 10.1007/s13762-016-1219-5
    [9] IGLESIAS-SUAREZ F, BADIA A, FERNANDEZ R P, et al. Natural halogens buffer tropospheric ozone in a changing climate[J]. Nature Climate Change, 2020, 10(2): 147-154. doi: 10.1038/s41558-019-0675-6
    [10] 李武波, 林耿杰, 陈伟志, 等. 汽车空调系统生产过程检漏能力提升[J]. 机电工程技术, 2024, 53(5): 226-228,247. doi: 10.3969/j.issn.1009-9492.2024.05.050
    [11] 张秀平, 刘晓红, 周到, 等. 工商制冷空调用换热器技术现状与发展趋势[J]. 流体机械, 2024, 52(6): 67-75. doi: 10.3969/j.issn.1005-0329.2024.06.009
    [12] Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases, amending Directive (EU) 2019/1937 and repealing Regulation (EU) No 517/2014 (Text with EEA relevance)[A]. (2024-02-07).
    [13] ZENG F, LI H, CHENG H, et al. SF6 decomposition and insulation condition monitoring of GIE: A review[J]. High Voltage, 2021, 6(6): 955-966. doi: 10.1049/hve2.12160
    [14] LIU B, LIU Z, JIANG C, et al. Insulation design of -800 kV gas insulation transmission line for negative ion based neutral beam injector[J]. Fusion Engineering and Design, 2023, 196: 114027.
    [15] 杨志强, 曾纪珺, 马义丁, 等. 六氟化硫替代气体的研究现状及未来发展趋势[J]. 化工进展, 2023, 42(8): 4093-4107.
    [16] DINESH D, NITHIN MOWSHIK A, MEYYAPPAN M, et al. Analysis of universal gas leak detector of hazardous gases using IOT[J]. Materials Today: Proceedings, 2022, 66: 1044-1050. doi: 10.1016/j.matpr.2022.04.837
    [17] RAMANI V N, SATHEESH KUMAR M, SACHUTHAN S. Vacuum and Helium Leak Testing Techniques Used for Very Large Size Vacuum Chambers[C]//MUKHOPADHYAY C K, MULAVEESALA R. Advances in Non-destructive Evaluation. Singapore: Springer, 2021: 297-305.
    [18] COLBOURNE D, VONSILD A L. Detection of R290 leaks in RACHP equipment using ultrasonic sensors[J]. International Journal of Refrigeration, 2023, 151: 342-353. doi: 10.1016/j.ijrefrig.2023.03.015
    [19] CALCATELLI A, BERGOGLIO M, MARI D. Leak detection, calibrations and reference flows: Practical example[J]. Vacuum, 2007, 81(11): 1538-1544.
    [20] FERREIRA O, FONSECA A, ADAME C F, et al. Advancing hydrogen leak detection: Design and calibration of reference leaks[J]. International Journal of Hydrogen Energy, 2024, 68: 1090-1096. doi: 10.1016/j.ijhydene.2024.04.328
    [21] 全国压力计量技术委员会. 卤素检漏仪校准规范: JJF 1964-2022[S]. 北京: 中国标准出版社, 2022.
    [22] 王汐月, 卢耀文, 陈千睿, 等. 超灵敏度检漏仪校准技术进展[J]. 真空科学与技术学报, 2023, 43(5): 390-395.
    [23] SALAZAR M N, SONG H W, WOO S Y, et al. A new controllable capillary-type standard leak for vacuum applications[J]. Journal of the Korean Physical Society, 2023, 83(9): 685-691. doi: 10.1007/s40042-023-00925-4
    [24] FONSECA A P, TEODORO O M N D. Design and characterization of refrigerant reference leaks[J]. International Journal of Refrigeration, 2019, 100: 463-470. doi: 10.1016/j.ijrefrig.2019.02.007
    [25] 刘贝贝, 刘燚, 蒋厚庸, 等. 全自动正压漏孔校准装置[J]. 上海计量测试, 2022, 49(5): 32-34. doi: 10.3969/j.issn.1673-2235.2022.05.011
    [26] 张猛, 贾钠钧, 谢昭群, 等. 卤素气体检漏仪的校准方法研究[J]. 广东化工, 2019, 46(4): 158-159. doi: 10.3969/j.issn.1007-1865.2019.04.076
    [27] 刘沂玲, 阮俊, 张绍旺, 等. 磷化氢气体标准物质的研制[J]. 中国测试, 2021, 47(12): 64-72.
    [28] 毛沅文, 尹强, 周阳, 等. 氮中1, 1, 1, 2-四氟乙烷气体标准物质的研制[J]. 当代化工, 2019, 48(7): 1441-1444,1448. doi: 10.3969/j.issn.1671-0460.2019.07.020
    [29] 王德发, 叶菁, 王泽璋, 等. 环境对标准气体气瓶质量称量的影响[J]. 计量科学与技术, 2020(10): 22-25. doi: 10.3969/j.issn.2096-9015.2020.10.07
    [30] 王德发, 李琪, 叶菁, 等. 气体测量中的线性拟合[J]. 计量科学与技术, 2022, 66(10): 3-9. doi: 10.12338/j.issn.2096-9015.2022.0100
    [31] 韩中杰, 刘沂玲, 郝静坤, 等. 基于动态配气技术的气体标准物质研制进展[J]. 化学试剂, 2024, 46(7): 91-99.
    [32] 全国法制计量管理计量技术委员会. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国质检出版社, 2012.
    [33] 孟长功. 无机化学[M]. 第六版. 大连: 高等教育出版社, 2018.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 录用日期:  2024-11-01
  • 修回日期:  2024-11-12
  • 网络出版日期:  2024-11-21

目录

    /

    返回文章
    返回