Recent Prospects on Some Problems in Inertial Technology Metrology
-
摘要: 惯性技术是研究运载体运动信息(位置、速度、姿态等)的获取与感知技术,是一个国家科学技术水平和国防实力的核心标志之一。在国防和国民经济建设重大需求的牵引下,惯性技术一直备受各国的高度重视,属于基础性、战略性和前沿性的军民两用高新技术。在惯性技术中,陀螺仪是测量运载体角速度的核心仪表,是运载体进行姿态调整/控制、实现自主/隐蔽导航的核心信息源之一, 其发展呈高精度和微型化两种趋势。本文总结梳理了惯性技术的发展动态和研究现状, 重点强调了陀螺仪的发展现状及惯性测试计量研究内容, 展望了新SI时代的原子惯性计量。Abstract: Inertial technology is the acquisition and perception technology for studying carriers’ motion information such as the position, velocity, and attitude, etc. It has become one of the core signs of national scientific and technological level and national defense strength. With the impetus of the demand from national defense and national economic construction, inertial technology has been highly valued by all countries, which is an essential, strategic, and forefront dual-use high technology. As the core instrument for measuring the angular velocity of carriers in the area of inertial technology, a gyroscope is one of the core information sources to adjust/control the attitude of carriers and realization of autonomous/covert navigation, with the development trend in high precision and miniaturization. This paper summarizes the development of inertial technology, emphasizes the development of gyroscopes and the research of metrology in inertial testing, and looks forward to inertial measurement based at the atomic level in the new SI era.
-
Key words:
- inertial technology /
- gyroscopes /
- angular velocity /
- test and metrology /
- atomic effect
-
表 1 陀螺仪发展现状
Table 1. Development status of gyroscope
陀螺仪 灵敏度(°/s/Hz1/2) 漂移(°/h) 第一代 三浮陀螺仪 < 2.5×10−7 1.5×10−5 静电陀螺仪 < 5×10−8 3.0×10−6 第二代 激光陀螺仪 < 2.5×10−6 1.5×10−4 光纤陀螺仪 < 5×10−6 3.0×10−4 第三代 原子自旋陀螺仪 < 1×10−10 1×10−8 原子干涉陀螺仪 < 1×10−12 1×10−10 -
[1] 郭雷, 房建成. 导航制导与传感技术研究领域若干问题的思考与展望[J]. 中国科学: 信息科学, 2017(9): 76-86. [2] 王巍. 惯性技术研究现状及发展趋势[J]. 自动化学报, 2013(6): 30-36. [3] King A D. Inertial navigation-forty years of evolution[J]. GEC Review, 1998, 13(3): 1-15. [4] 赵民智, 纪丽敏, 万承军. 我国惯性仪器仪表的技术特点及发展综述[J]. 传感器世界, 2009, 15(7): 16-19. doi: 10.3969/j.issn.1006-883X.2009.07.002 [5] 薛连莉, 王常虹, 杨孟兴, 等. 自主导航控制及惯性技术发展趋势[J]. 导航与控制, 2017, 16(6): 83-90. doi: 10.3969/j.issn.1674-5558.2017.06.015 [6] 严小军, 董蓉桦, 陈效真, 等. 石墨烯用于惯性器件轻质功能结构的探讨[J]. 导航与控制, 2017, 16(6): 91-98, 32. doi: 10.3969/j.issn.1674-5558.2017.06.016 [7] 王常虹, 任顺清, 陈希军. 惯性仪表测试技术[J]. 导航定位与授时, 2016, 3(5): 1-4. [8] Chu S. Nobel Lecture: The manipulation of neutral particles[J]. Reviews of Modern Physics, 1998, 70(3): 685-706. doi: 10.1103/RevModPhys.70.685 [9] Ketterle W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser[J]. Reviews of Modern Physics, 2002, 74(4): 1131-1151. doi: 10.1103/RevModPhys.74.1131 [10] Hall J L. Nobel Lecture: Defining and measuring optical frequencies[J]. Reviews of Modern Physics, 2006, 78(4): 1279-1295. doi: 10.1103/RevModPhys.78.1279 [11] 邹鹏飞, 颜树华, 林存宝, 等. 冷原子干涉陀螺仪在惯性导航领域的研究现状及展望[J]. 现代导航, 2013(4): 33-39. [12] 邹宏新. 新一代惯性导航技术——量子导航[J]. 国防科技, 2014, 35(6): 19-24. [13] 刘院省, 王巍, 王学锋, 等. 微型核磁共振陀螺仪的关键技术及发展趋势[J]. 导航与控制, 2014, 13(4): 1-6. doi: 10.3969/j.issn.1674-5558.2014.04.007 [14] 李润兵, 王谨, 詹明生. 新一代惯性导航技术: 冷原子陀螺仪[J]. 全球定位系统, 2010(4): 5-9. [15] 范秋丽. 惯性技术在航空领域的发展与应用[J]. 飞航导弹, 2017(10): 9-14. [16] Yu H, Yang T C, Rigas D, et al. Modelling and control of magnetic suspension systems[C]. Proceedings of the 2002 IEEE International Conference on Control Applications. Glasgow, UK: IEEE, 2002.944-949. [17] 张学峰, 许江宁, 周红进. 原子激光陀螺[J]. 中国惯性技术学报, 2006, 14(5): 86-88. doi: 10.3969/j.issn.1005-6734.2006.05.023 [18] 王巍, 杨清生, 王学锋. 光纤陀螺的空间应用及其关键技术[J]. 红外与激光工程, 2006, 35(5): 509-512. doi: 10.3969/j.issn.1007-2276.2006.05.002 [19] 王巍. 光纤陀螺惯性系统[M]. 北京: 中国宇航出版社, 2010: 1-212. [20] 祝彬, 郑娟. 美国惯性导航与制导技术的新发展[J]. 中国航天, 2008(1): 49-51. [21] 王巍, 何胜. MEMS 惯性仪表技术发展趋势[J]. 导弹与航天运载技术, 2009(3): 23-28. doi: 10.3969/j.issn.1004-7182.2009.03.006 [22] Hanse J G. Honeywell MEMS Inertial Technology & Product Status[C]. Proceedings of the 2004 Symposium on Position Location and Navigation, 2004, 43-48. [23] Gription A. The application and future development of a MEMS SiVSr for commercial and military inertial products[C]. Proceedings of the 2002 Symposium on Position Location and Navigation. Palms Springs, CA: IEEE, 2002: 28-35. [24] 房建成. 基于原子自旋效应的超高灵敏度惯性和磁场测量技术研究进展[C]. 第十届全国光电技术学术交流会论文集, 2012. [25] 宋培帅, 马静, 马哲, 等. 量子定位导航技术研究与发展现状[J]. 激光与光电子学进展, 2018, 55(9): 29-43. [26] 邓建辉, 郑孝天. 冷原子干涉陀螺仪发展综述[J]. 光学与光电技术, 2014, 12(5): 94-98. [27] 李明泽, 褚鹏蛟, 张超. 冷原子干涉陀螺仪技术专利分析研究[J]. 导航与控制, 2017(6): 109-115. [28] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 2006, 97(24): 240801. doi: 10.1103/PhysRevLett.97.240801 [29] Romalis M, Kornack T. Chip-Scale Combinatorial Atomic Navigator (C-SCAN) Low Drift Nuclear Spin Gyroscope[D]. Princeton University Princeton United States, 2018. [30] Larsen M, Bulatowicz M. Nuclear Magnetic Resonance Gyroscope: For DARPA’s microtechnology for positioning, navigation and timing program[C]. Frequency Control Symposium(FCS), 2012 IEEE International, 2012: 1-5. [31] Meyer D, Larsen M. Nuclear magnetic resonance gyro for inertial navigation[J]. Gyroscopy and Navigation, 2014, 5(2): 75-82. doi: 10.1134/S2075108714020060 [32] 陈循, 温熙森. 环境试验技术的现状综述与集成环境应力试验分析系统[J]. 国防科技大学学报, 1998(6): 78-82. [33] 吴宏鑫, 胡军, 解永春. 航天器智能自主控制研究的回顾与展望[J]. 空间控制技术与应用, 2016, 42(1): 5-10. [34] 冯培德. 发展中国大型飞机机载设备的思考[J]. 航空学报, 2008(3): 174-178. [35] 房建成, 郭雷. 导航技术[R]. 2007-2008 控制科学与工程学科发展报告, 2008. [36] 戚发轫. 载人航天技术及其发展[J]. 中国工程科学, 2000, 2(1): 1-6. doi: 10.3969/j.issn.1009-1742.2000.01.001 [37] Gyurosi M. Russia develops strap-down inertial systems for missiles[J]. Janes Missiles and Rockets, 2006. [38] 赵爱德. 全自动三维多功能惯导测试转台测角系统的研究[D]. 合肥工业大学, 2006. [39] 王礼. 三轴仿真转台实时控制系统若干问题研究[D]. 哈尔滨工业大学, 2005. [40] Schumm T, Hofferberth S, Andersson L M, et al. Matter-wave interferometry in a double well on an atom chip[J]. Nature physics, 2005, 1(1): 57-62. doi: 10.1038/nphys125