True-Value Centered Theory and Measured-Value Centered Theory in Measurement Error Theories
-
摘要: 传统经典测量误差理论认为测得值(观测值)是随机变量,真值是常量;但新概念测量理论认为测得值(观测值)是常量,真值是随机变量。本文通过概率论概念的回顾,对二种不同的常量和随机变量概念解释进行对比分析,指出传统测量理论对基本数学概念的曲解以及由此导致的诸多概念逻辑困境,并阐明新概念测量理论的基本概念逻辑和误差评价原理。Abstract: The classical measurement error theory postulates that the measured (observed) value is a random variable while the true value is a constant. In contrast, a new-concept measurement theory postulates that the measured value is a constant while the true value is a random variable. After reviewing concepts in the probability theory, this paper makes a comparative analysis of the above-mentioned theories in respect of the different interpretations of the constant and the random variable. It is pointed out that the traditional measurement theory misinterprets basic mathematical concepts, leading to conceptual or logical trouble. The basic concepts and logic and principles of error evaluation are explained in the new measurement theory.
-
Key words:
- measurement /
- measurement error /
- random variable /
- variance /
- uncertainty /
- probability theory
-
表 1 概率论教科书对离散型随机变量概念的描述
Table 1. The concept of a discrete random variable in the probability theory
$ X $ $ {x}_{1} $ $ {x}_{2} $ … $ {x}_{i} $ … $ P $ $ {p}_{1} $ $ {p}_{2} $ … $ {p}_{i} $ … 表 2 公式(10)(11)(12)中的概念类别比较
Table 2. Comparison of concept categories in Formulas (10), (11), and (12)
观测值${q_k}$ 观测值${q_j}$ 测得值$\bar q $ 公式(10) 常数 —— 常数 公式(11) 随机变量 常数 常数 公式(12) 随机变量 —— 随机变量 表 3 传统测量误差理论中的数学期望缺失问题
Table 3. Lack of mathematical expectation in the traditional measurement error theory
测得值$ x $ 随机误差$ r=x-E\left(x\right) $ 系统误差$ s=E\left(x\right)-{x}_{T} $ 真值$ {x}_{T} $ $\left\{ {\begin{array}{*{20}{l}} {E(x) = ???} \\ {{u^2}(x) = E{{[x - E(x)]}^2}} \end{array} } \right.$ $\left\{ {\begin{array}{*{20}{l}} {E(r) = 0} \\ {{u^2}(r) = {u^2}(x)} \end{array} } \right.$ $\left\{ {\begin{array}{*{20}{l}} {E(s) = ???} \\ {{u^2}(s) = 0} \end{array} } \right.$ $\left\{ {\begin{array}{*{20}{l}} {E({x_T}) = ???} \\ {{u^2}({x_T}) = 0} \end{array} } \right.$ 表 4 新概念测量误差理论中的概念解释
Table 4. Concepts in the new measurement error theory
测得值$ {x}_{0} $ 误差$ \varDelta $ 真值$ {X}_{T} $ $\left\{ {\begin{array}{*{20}{l}} {E({x_0}) = {x_0}} \\ {{u^2}({x_0}) = 0} \end{array} } \right.$ $\left\{ {\begin{array}{*{20}{l}} {E(\varDelta ) = 0} \\ {{u^2}(\varDelta ) = E({\varDelta ^2})} \end{array} } \right.$ $\left\{ {\begin{array}{*{20}{l}} {E({X_T}) = {x_0}} \\ {{u^2}({X_T}) = {u^2}(\varDelta )} \end{array} } \right.$ 表 5 三段基线的全组合观测值
Table 5. Combination of all observations of three-section baselines
线段 AB BC CD AC BD AD 观测值 $ {x}_{1} $ $ {x}_{2} $ $ {x}_{3} $ $ {x}_{4} $ $ {x}_{5} $ $ {x}_{6} $ -
[1] 叶晓明, 凌模, 周强, 等. 误差理论的新哲学观[J]. 计量学报, 2015, 36(6): 666-670. doi: 10.3969/j.issn.1000-1158.2015.06.25 [2] Ye Xiao-ming, Xiao Xue-bin, Shi Jun-bo, et al. The new concepts of measurement error theory[J]. Measurement, 2016, 83(4): 96-105. [3] Ye Xiao-ming, Liu Hai-bo, Ling Mo, et al. The new concepts of measurement error's regularities and effect characteristics[J]. Measurement, 2018, 126(10): 65-71. [4] Ye Xiao-ming, Ding Shi-jun. Comparison of variance concepts interpreted by two measurement theories[J]. Journal of Nonlinear and Convex Analysis, 2019, 20(7): 1307-1316. [5] Shi Huisheng, Ye Xiaoming, Xing Cheng, et al. Originand Evolution of Conceptual Differences between Two Measurement Theories[J]. Fuzzy Systems and Data MiningVI, 2020(1): 66-77. [6] Shi Huisheng, Ye Xiaoming, Xing Cheng, et al. A New Theoretical Interpretation of Measurement Error and Its Uncertainty[J]. Discrete Dynamics in Nature and Society, 2020(2020):1-14. [7] 叶晓明. 新概念测量误差理论[M]. 武汉: 湖北科学技术出版社, 2017. [8] 叶晓明. 测量误差及其不确定性的普适理论(共享版)[EB/OL].http://blog.sciencenet.cn/home.php?mod=space&uid=630565&do=blog&view=me&from=space. [9] 齐民友, 刘禄勤, 王文祥, 等. 概率论与数理统计[M]. 高等教育出版社, 2011: 44-46. [10] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 高等教育出版社, 2008: 32-33. [11] JCGM 200: 2012, International vocabulary of metrology — Basic and general concepts and associated terms (VIM)[S]. BIPM, S´evres, France, 2012. [12] 国家质量监督检验检疫总局.通用计量术语及其定义: JJF1001-2011[S]. 中国质检出版社, 2011. [13] 国家质量监督检验检疫总局. 测绘学基本术语: GB/T14911-2008[S]. 中国标准出版社, 2008. [14] 武汉大学测绘学院. 误差理论与测量平差基础[M]. 武汉大学出版社, 2016. [15] 费业泰. 误差理论与数据处理[M]. 机械工业出版社, 2016. [16] JCGM 100: 2008, Guide to the Expression of Uncertainty in Measurement(GUM)[S]. BIPM, S´evres, France. 2008. [17] 国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF1059-2012[S]. 中国质检出版社, 2011. [18] Churchill Eisenhart. Expression of the Uncertainties of Final Results[J] Science, 1968, 14(6): 1201-1204. [19] 叶德培. 测量不确定度理解、评定与应用[M]. 中国计量出版社, 2007. [20] ISO 17123-4: 2012, Optics and optical instruments -- Field procedures for testing geodetic and surveying instruments -- Part 4: Electro-optical distance meters (EDM measurements to reflectors)[S]. ISO, Geneva, Switzerland, 2012.