Performance Evaluation of a Nitrogen Oxides (NOx) Monitor with Zirconium Oxide (ZrO2) Oxygen Pumping Sensors
-
摘要: 介绍了基于氧泵原理的氮氧化物监测仪,并对其性能进行评价。结果表明,该氮氧化物监测仪的准确度较高、重复性和稳定性较好,同时受环境影响小,在小锅炉氮氧化物排放连续监测和工业过程控制中具有较高的应用价值。Abstract: This paper describes the concept and performance evaluation of an NOx monitor with ZrO2 oxygen pumping sensors. Test results showed that the NOx monitor presented good repeatability, accuracy, and stability, and it was seldom affected by the environment. It suggested that the NOx monitor could be used in the continuous monitoring of NOx in exhaust gases produced by industrial processes.
-
Key words:
- nitrogen oxides /
- oxygen pumping principle /
- zirconium oxide /
- gas analysis /
- continuous monitoring
-
表 1 NOX/O2监测仪的示值误差
Table 1. Indication error of the NOX/O2 monitor
组分 标准值(μmol/mol) 测量值(μmol/mol) 示值误差(%) NO 20.9 21.17 1.3 51.7 51.77 0.1 81.6 82.53 1.1 NO2 20.0 20.37 1.8 50.0 50.33 0.7 80.0 82.00 2.5 O2 5.0 5.05 1.1 12.5 12.40 −0.8 20.0 19.87 −0.7 表 2 NOX/O2监测仪的重复性
Table 2. Repeatability of NOX/O2 monitor
组分 测量值(μmol/mol) 重复性(%) 1 2 3 4 5 6 NO 81.7 82.5 82.7 82.5 82.4 82.5 0.1 NO2 82.0 82.2 79.9 82.6 82.5 82.4 1.1 组分 测量值(%) 重复性(%) 1 2 3 4 5 6 O2 19.88 19.87 19.86 19.88 19.84 19.85 0.1 表 3 NOX/O2监测仪的稳定性
Table 3. Stability of the NOX/O2 monitor
组分 测量值(μmol/mol) 稳定性(%) 0 15 min 30 min 45 min 60 min NO 82.5 82.4 82.7 81.6 81.9 1.1 O2 19.88 19.82 19.78 19.80 19.75 0.7 表 4 NOX/O2监测仪的环境实验示值误差
Table 4. Indication error of the NOX/O2 monitor in an environmental experiment
评价项目 实测结果 组分 示值误差(%) 高温实验 NO 1.2 O2 −1.2 低温实验 NO −2.3 O2 −1.1 恒定湿热实验 NO 1.6 O2 −1.0 -
[1] 李军, 雷鑫, 王皓, 等. 锅炉氮氧化物排放标准对比与低氮燃烧技术[J]. 区域供热, 2018, 1: 70-74. [2] 许玲, 武增华. 煤燃烧过程中NOx产生机制及影响因素[J]. 环境保护, 1998(5): 33-35. [3] 刘小华. 基于氮氧化物危害及其防治对策[J]. 低碳世界, 2017, 9: 8-9. doi: 10.3969/j.issn.2095-2066.2017.34.005 [4] Michael H, Juhua L, Catherine C, et al. Air pollution exposures from multiple point sources and risk of incident chronic obstructive pulmonary disease (COPD) and asthma[J]. Environmental Research, 2019, 179: 108783. doi: 10.1016/j.envres.2019.108783 [5] Gali C, David M S, Yuval, et al. Cancer and mortality in relation to traffic-related air pollution among coronary patients: Using an ensemble of exposure estimates to identify highrisk individuals[J]. Environmental Research, 2019, 176: 108560. doi: 10.1016/j.envres.2019.108560 [6] 钱斌. 燃煤锅炉氮氧化物的污染及控制技术综述[J]. 有色冶金设计与研究, 2000, 21(2): 41-46. [7] 环境保护部, 国家质量监督检验检疫总局. 锅炉大气污染物排放标准: GB13271-2014[S]. 北京: 中国环境出版社, 2014. [8] 北京市环境保护局, 北京市质量技术监督局. 锅炉大气污染物排放标准: DB11/139-2015[S]. 北京: 中国环境出版社, 2015. [9] 吴方堃, 刘全, 王跃思, 等. 不同原理分析仪观测大气中氮氧化物对比研究[J]. 环境工程学报, 2010, 4(4): 865-869. [10] 刘军, 冯艳军, 刘中军. 基于化学发光检测法的氮氧化物气体分析仪[J]. 仪表技术与传感器, 2008, 3: 83-84. doi: 10.3969/j.issn.1002-1841.2008.08.031 [11] 陈代胜, 张莉君, 鲍建国. 化学发光法和DOAS测定NOx的对比研究[J]. 环境科学与技术, 2007, 30(9): 50-52. doi: 10.3969/j.issn.1003-6504.2007.09.018 [12] 朱卫东. 化学发光氮氧化物分析器的结构特点与应用[J]. 分析仪器, 2002, 2: 40-43. doi: 10.3969/j.issn.1001-232X.2002.02.016 [13] 庄马展, 吴宇光, 杨青. 差分光谱仪与传统点式仪器测定环境空气质量对比研究[J]. 环境保护, 2000, 5: 26-27. doi: 10.3969/j.issn.0253-9705.2000.03.009 [14] 杨丽萍. DoAS自动监测系统在天津市环境监测中的应用[J]. 天津科技, 2005, 3: 39-40. doi: 10.3969/j.issn.1006-8945.2005.03.020 [15] 姜乃雄. 氧化锆氧泵在气体净化中的应用[J]. 化学通报, 1988, 3: 49-50. [16] Kato N , Nakagaki K , Ina N . Thick Film ZrO2 NOx Sensor[C]. International Congress & Exposition, 1996. [17] 国家质量监督检验检疫总局. 烟气分析仪型式评价大纲: JJF1362-2012[S]. 北京: 中国质检出版社, 2015.