Design Optimization of the Resonance Frequency of a High Sound Pressure Resonant Coupled Tube
-
摘要: 谐振耦合管法产生的声压源具有高声压级、低失真的特点,通常用于高声压传声器在固定频率下的线性度校准。基于声学有限元模型,分析了谐振耦合管的特征频率和频率响应,优化了谐振耦合管的设计,其共振基频的实验值与计算值相差0.8 Hz,500 Hz谐振耦合管实现的声压级可到174 dB,总谐波失真为0.5%。Abstract: The sound pressure source generated by the resonant coupled tube method has a high sound pressure level with a low distortion. It is usually used for the calibration of level linearity and distortion of high sound pressure microphones at a fixed frequency. Based on the acoustic finite element model, this paper analyzes the characteristic frequency and frequency response of a resonant coupled tube, and optimizes the design of the tube. The experimental value of the resonant fundamental frequency differed from the calculated value by 0.8 Hz. The resonant coupled tube at 500 Hz generated a sound pressure level of 174 dB with a total harmonic distortion of 0.5%.
-
Key words:
- high sound pressure /
- resonant coupled tube /
- finite element analysis /
- frequency design
-
表 1 谐振耦合管的特征频率
Table 1. Characteristic frequency of the resonant coupled tube
Hz 一阶 二阶 三阶 四阶 五阶 500.8 624.9 1140.1 1622.5 1752.1 表 2 谐振频率实验值和计算值的对照
Table 2. Comparison of experimental and calculated resonant frequencies
Hz 一阶 二阶 三阶 计算 500.8 624.9 1140.1 实验 500.0 625.0 1165.0 $\left| \varDelta \right|$ 0.8 0.1 24.9 表 3 T2管顶部在不同声压级下的测试结果
Table 3. Test results at different sound pressure levels at the top end of the tube T2
声压级/dB THD/% 声压级/dB THD/% 114 0.21 167 0.20 124 0.06 168 0.25 134 0.02 169 0.41 144 0.01 170 0.39 154 0.04 171 0.37 164 0.14 172 0.37 165 0.15 173 0.39 166 0.17 174 0.45 -
[1] 黄凯莉, 袁天辰. 基于射流的高速列车受电弓空腔气动噪声降噪方法[J]. 铁道学报, 2020, 42(7): 50-56. [2] 杨航洲, 李秀凤. 高声强中频声波除灰器在裂解炉中的应用[J]. 石化技术与应用, 2019, 37(3): 195-197. doi: 10.3969/j.issn.1009-0045.2019.03.011 [3] Oberst H A. Method for the production of extremely powerful standing waves in air[J]. Akust. Zh(S0320-7919), 1940(5): 27-38. [4] 彭锋, 范瑜晛, 刘丹晓. 变截面闭管中非线性驻波场的实验研究[J]. 声学技术, 2008, 27(2): 156-162. [5] 范瑜晛, 刘克. 变截面闭管中谐波及其饱和特性的实验研究[J]. 声学技术, 2007, 26(5): 976-977. doi: 10.3969/j.issn.1000-3630.2007.05.049 [6] 闵琦, 彭锋. 突变截面驻波管和极高纯净驻波场的实验研究[J]. 声学学报, 2010, 35(2): 185-191. [7] Min Qi, Duan Hong. Experimental investigation on standing-wave tube with abrupt section and extremely nonlinear pure standing-wave field[J]. Chinese Journal of Acoustics, 2010, 29(4): 321-330. [8] 闵琦, 刘克. 失谐驻波管及其极高纯净驻波场性质的研究[J]. 物理学报, 2011, 60(2): 1-9. [9] Min Qi. A study on the dissonant standing-wave tube with variable section and its extremely nonlinear standing-wave field[J]. Phys. Lett, 2012, A 377: 99-106. [10] Min Qi, Wan-Quan He. A Study of Stepped Acoustic Resonator with Transfer Matrix Method[J]. Physical Foundation of Engineering acoustics, 2014(4): 492-498. [11] Min Qi. Generation of extremely nonlinear standing-wave field using loudspeaker-driven dissonant tube[J]. J. Acoust. Soc. Am., 2018, 143(3): 1472-1476. doi: 10.1121/1.5026514 [12] Niu F, Zheng A, Zhu H, et al. Measurement of microphone parameters based on high-pressure calibration system[C]. Proceedings of 2012 IEEE. Chengdu: IEEE Computer Society, 2012: 687-691. [13] E Frederiksen. System for Measurement of Microphone distortion and Linearity from Medium to Very High Levels[J]. B& K Tech Review, 2002(1): 25-34.