留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPM与DIC技术的应变场测量改进方法

柏文琦 向德 王柠莎

【引用本文】 柏文琦,向德,王柠莎. 基于SPM与DIC技术的应变场测量改进方法[J]. 计量科学与技术,2021, 65(3):75-79, 8 doi: 10.3969/j.issn.2096-9015.2021.03.16
引用本文: 【引用本文】 柏文琦,向德,王柠莎. 基于SPM与DIC技术的应变场测量改进方法[J]. 计量科学与技术,2021, 65(3):75-79, 8 doi: 10.3969/j.issn.2096-9015.2021.03.16
BAI Wenqi, XIANG De, WANG Ningsha. Improved Strain Field Measurement Based on SPM and DIC[J]. Metrology Science and Technology, 2021, 65(3): 75-79, 8. doi: 10.3969/j.issn.2096-9015.2021.03.16
Citation: BAI Wenqi, XIANG De, WANG Ningsha. Improved Strain Field Measurement Based on SPM and DIC[J]. Metrology Science and Technology, 2021, 65(3): 75-79, 8. doi: 10.3969/j.issn.2096-9015.2021.03.16

基于SPM与DIC技术的应变场测量改进方法

doi: 10.3969/j.issn.2096-9015.2021.03.16
基金项目: 湖南省科技创新计划资助(2018XK2008)
详细信息
    作者简介:

    柏文琦(1980-),湖南省计量检测研究院高级工程师,研究方向:计量测试技术、故障监测分析,邮箱:baiwenqi2@qq.com

Improved Strain Field Measurement Based on SPM and DIC

  • 摘要: 微纳米尺度下的应力/应变测量方法是实验力学研究的重要方向之一。现有的许多研究忽略了待测试件表面的散斑图质量、系统随机误差、计算流程等因素对最终的应变场测量精度的影响。围绕基于扫描探针显微镜的数据图像相关技术实现过程,提出科学的评估准则、优化位移场计算方法。实验结果表明,所提出的应变场计算方法在精度控制方面的性能得到显著提升。
  • 图  1  基于SPM与DIC技术的应变场测量流程图

    Figure  1.  Flowchart of strain field measurement based on SPM and DIC

    图  2  根据式(10)得到的散斑图

    Figure  2.  Speckle image obtained by Eq. (10)

    图  3  根据式(11)得到的散斑图

    Figure  3.  Speckle image obtained by Eq. (11)

    图  4  R=5时根据式(10)得到的散斑灰度三维分布图

    Figure  4.  Distribution of grayscale values of the speckle image obtained by Eq. (10) when R=5

    图  5  R=5时根据式(11)得到的散斑灰度三维分布图

    Figure  5.  Distribution of grayscale values of the speckle image obtained by Eq. (11) when R=5

    表  1  散斑图平均灰度梯度对比

    Table  1.   Average grayscale gradient of speckle images

    选取函数R=1R=3R=5
    式(10)1.861.861.88
    式(11)0.060.380.75
    下载: 导出CSV

    表  2  位移场估计误差

    Table  2.   Estimation error of the displacement field

    变形程度36912
    散斑区域尺寸485.9%6.5%7.2%3.8%
    644.7%6.2%5.4%3.4%
    1281.1%1.3%1.2%1.3%
    下载: 导出CSV
  • [1] Pataky G J, Sehitoglu H. Experimental methodology for studying strain heterogeneity with microstructural data from high temperature deformation[J]. Experimental Mechanics, 2015, 55(1): 53-63. doi: 10.1007/s11340-014-9926-7
    [2] Zhang J, Cai Y, Ye W, et al. On the use of the digital image correlation method for heterogeneous deformation measurement of porous solids[J]. Optics and Lasers in Engineering, 2011, 49(2): 200-209. doi: 10.1016/j.optlaseng.2010.09.015
    [3] 杜亚志, 王学滨, 董伟, 等. 基于一阶及二阶DIC方法的常应变剪切带的测量误差分析[J]. 计量学报, 2018, 39(1): 66-71. doi: 10.3969/j.issn.1000-1158.2018.01.15
    [4] Dong Y L, Pan B. A review of speckle pattern fabrication and assessment for digital image correlation[J]. Experimental Mechanics, 2017, 57(8): 1161-1181. doi: 10.1007/s11340-017-0283-1
    [5] Nautiyal P, Zhang C, Champagne V K, et al. In-situ mechanical investigation of the deformation of splat interfaces in cold-sprayed aluminum alloy[J]. Materials Science and Engineering: A, 2018, 737: 297-309. doi: 10.1016/j.msea.2018.09.065
    [6] 丁健, 罗文波, 袁宝峰, 等. 数字图像相关测量方法及其在航天器结构微变形测量中的应用[J]. 计量学报, 2017, 38(S1): 89-93.
    [7] Landauer A K, Patel M, Henann D L, et al. A q-factor-based digital image correlation algorithm (qDIC) for resolving finite deformations with degenerate speckle patterns[J]. Experimental Mechanics, 2018, 58(5): 815-830. doi: 10.1007/s11340-018-0377-4
    [8] Bruck H A, McNeill S R, Sutton M A, et al. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental mechanics, 1989, 29(3): 261-267. doi: 10.1007/BF02321405
    [9] Palanca M, Brugo T M, Cristofolini L. Use of digital image correlation to investigate the biomechanics of the vertebra[J]. Journal of Mechanics in Medicine and Biology, 2015, 15(2): 154-164.
    [10] Su Y, Zhang Q, Xu X, et al. Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors[J]. Optics and Lasers in Engineering, 2016, 86: 132-142. doi: 10.1016/j.optlaseng.2016.05.019
    [11] Yaofeng S, Pang J H L. Study of optimal subset size in digital image correlation of speckle pattern images[J]. Optics and lasers in engineering, 2007, 45(9): 967-974. doi: 10.1016/j.optlaseng.2007.01.012
    [12] Zhan Q, Yuan Y, Fan X, et al. Digital image correlation involves an inverse problem: A regularization scheme based on subset size constraint[J]. Optics and Lasers in Engineering, 2016, 81: 54-62. doi: 10.1016/j.optlaseng.2016.01.007
    [13] Pan B. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J]. Measurement Science and Technology, 2018, 29(8): 082-091.
    [14] Pan B, Lu Z, Xie H. Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J]. Optics & Lasers in Engineering, 2010, 48(4): 469-477.
    [15] 苏勇, 张青川. 数字图像相关的噪声导致系统误差及散斑质量评价标准[J]. 实验力学, 2017, 32(5): 699-717.
    [16] Pan B, Qian K, Xie H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science & Technology, 2009, 20(6): 152-154.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  276
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-04-13

目录

    /

    返回文章
    返回