Remote Time Transfer and Traceability Method, Device and System
-
摘要:
为解决法定时间量值的远程传递问题,填补可溯源的时间标准及时间计量器具的空白,研究了远程时间溯源方法,参考原子时标国家计量基准(UTC(NIM)),利用GNSS时间频率传递方法,通过驯服铷原子钟、铯原子钟和氢原子钟,研制了远程时间溯源装置NIMDO,基于装置初步构建了远程时间溯源体系。通过多种实验验证,装置在远程端实现了一个高性能的时标,实时与UTC(NIM)驯服同步,相当于在远程端以一定的时间和频率偏差复现了UTC(NIM),超过90%的时间NIMDO与UTC(NIM)的时间偏差优于±10 ns、频率偏差优于±1×10−13,在87%以上的情况时间偏差保持在±5 ns内。
Abstract:To solve the problem of remote transmission of legal time measurements and fill the gap of traceable time standards and time-measuring instruments, the remote time traceability method was studied, and the remote time traceability device NIMDO was developed by disciplining rubidium, cesium, and hydrogen atomic clocks with reference to the atomic time national primary standard (UTC(NIM)) and using the GNSS time and frequency transfer method, and a remote time traceability system was preliminarily constructed based on the device. Through various experimental verifications, the device achieves a high-performance time scale at the remote end and synchronizes with UTC(NIM) in real-time, which is equivalent to reproducing UTC(NIM) at the remote end with a certain time and frequency deviations, and the time deviation of NIMDO from UTC(NIM) is better than ±10 ns and frequency deviation is better than ±1×10−13 in over 90% of the time, and the time deviation stays within ±5 ns in more than 87% of the cases.
-
表 1 长基线NIMDO时间偏差统计
Table 1. Time deviation statistics of NIMDOs over longer baselines
NIMDO代码 观测点数 0<|**|<5 ns 5 ns<|**|<10 ns |**|>10 ns TS15 17192 16126 1066 0 (93.80%) (6.20%) (0.00%) TS17 16447 16108 339 0 (97.94%) (2.06%) (0.00%) TS23 15976 15522 454 0 (97.16%) (2.84%) (0.00%) TS24 16937 16091 846 0 (95.01%) (4.99%) (0.00%) TS26 17180 16878 302 0 (98.24%) (1.76%) (0.00%) 表 2 长基线NIMDO频率偏差(一天间隔)统计
Table 2. Frequency deviation statistics of NIMDOs over longer baselines
NIMDO代码 观测点数 0<|**|<5$ \times {10}^{-14} $ 5$ \times {10}^{-14} $<|**|
<1$ \times {10}^{-13} $1$ \times {10}^{-13} $<|**|
<2$ \times {10}^{-13} $|**|>2$ \times {10}^{-13} $ TS15 201 166 29 6 0 (82.59%) (14.43%) (2.99%) (0.00%) TS17 189 164 23 1 1 (86.77%) (12.17%) (0.53%) (0.53%) TS23 189 158 26 3 2 (83.60%) (13.76%) (1.59%) (1.06%) TS24 198 171 23 1 3 (86.36%) (11.62%) (0.51%) (1.52%) TS26 199 177 20 2 0 (88.94%) (10.05%) (1.01%) (0.00%) 表 3 实验中使用的接收机
Table 3. Receiver employed in the experiments
接收机代码 型号 时间频率参考 GNSS系统 IM07 NIM-TF-GNSS-2J 铯钟(Cs clock) /铷钟(Rb clock) GPS TF07 NIM-TF-GNSS-3 铯钟(Cs clock) BDS和GPS IM13 NIM-TF-GNSS-3 氢钟(H-maser) BDS和GPS IM14 NIM-TF-GNSS-3 铯钟(Cs clock) BDS和GPS 表 4 铷钟、铯钟和氢钟时差测量值统计
Table 4. Time difference statistics of Rudium, Caesium, and H-maser
NIMDO类型 观测量 0<|**| <5 ns 5 ns<|**| <10 ns 10 ns<|**| <15 ns 15 ns<|**| <20 ns |**|>20 ns IM07 GPS Cs 29523 28549 974 0 0 0 94.89% 5.11% 0 0 0 IM07 GPS Rb 4449 4100 349 0 0 0 91.94% 8.06% 0 0 0 IM13 GPS H 19462 18929 533 0 0 0 97.27% 2.73% 0 0 0 IM13 BDS H 13622 13179 440 3 0 0 96.75% 3.23% 0.2% 0 0 TF07 BDS Cs 7771 7253 518 0 0 0 93.33% 6.67% 0 0 0 IM14 BDS Cs 10392 9478 914 0 0 0 91.28% 8.72% 0 0 0 表 5 铷钟、铯钟和氢钟频差(一天间隔)测量值统计
Table 5. Frequency difference (one day interval) statistics of Rudium, Caesium, and H-maser
NIMDO类型 观测量 0<|**|<5$ \times {10}^{-14} $ 5$ \times {10}^{-14} $<|**|<1$ \times {10}^{-13} $ 1$ \times {10}^{-13} $<|**|<2$ \times {10}^{-13} $ |**|>2$ \times {10}^{-13} $ IM07 GPS Cs 331 287 44 0 0 86.71% 13.29% 0 0 IM07 GPS Rb 55 36 16 3 0 65.45% 29.09% 5.46% 0 IM13 GPS H 235 192 40 3 0 81.04% 17.65% 1.31% 0 IM13 BDS H 153 124 22 7 0 81.06% 14.38% 4.6% 0 TF07 BDS Cs 88 67 15 6 0 76.14% 23.86% 0 0 IM14 BDS Cs 116 94 20 2 0 81.18% 16.95% 1.87% 0 表 6 远程站与UTC(NIM)时差数据统计
Table 6. Time difference statistics between the remote stations and UTC (NIM)
远程站 观测
点数0<|**|
<5 ns5 ns<|**|
<10 ns10 ns<|**|
<15 ns15 ns<|**|
<20 ns|**|>20 ns IM04 123591 108764 10234 205 1074 3314 88.00% 8.28% 0.17% 0.87% 2.68% IM08 122621 111760 8631 467 987 776 91.14% 7.04% 0.38% 0.80% 0.63% IM10 123986 114884 6485 588 999 1030 92.66% 5.23% 0.47% 0.81% 0.83% TS15 56536 53580 1469 391 10 1086 94.77% 2.60% 0.69% 0.02% 1.92% TS17 33932 30399 2043 390 4 1096 89.59% 6.02% 1.15% 0.01% 3.23% TS18 13590 11591 1304 30 662 3 85.29% 9.60% 0.22% 4.87% 0.02% TS19 45231 39496 5713 0 22 0 87.32% 12.63% 0.00% 0.05% 0.00% TS20 30206 27060 491 683 3 1969 89.58% 1.63% 2.26% 0.01% 6.52% TS21 32348 29953 903 421 4 1067 92.60% 2.79% 1.30% 0.01% 3.30% TS22 26652 24741 421 370 2 1118 92.83% 1.58% 1.39% 0.01% 4.19% TS23 46963 44581 892 370 2 1118 94.93% 1.90% 0.79% 0.00% 2.38% TS24 29402 26124 1788 431 26 1033 88.85% 6.08% 1.47% 0.09% 3.51% TS26 30173 27408 1274 463 3 1025 90.84% 4.22% 1.53% 0.01% 3.40% TS27 23716 21195 845 448 135 1093 89.37% 3.56% 1.89% 0.57% 4.61% 表 7 远程站与UTC(NIM)频差(一天间隔)数据统计
Table 7. Frequency differences (one day interval) statistics between the remote stations and UTC (NIM)
远程站 观测
点数0<|**|<5$ \times {10}^{-14} $ 5$ \times {10}^{-14} $<|**|
<1$ \times {10}^{-13} $1$ \times {10}^{-13} $<|**|
<2$ \times {10}^{-13} $|**|>2$ \times {10}^{-13} $ IM04 1445 966 348 98 33 66.85% 24.08% 6.78% 2.28% IM08 1337 958 258 82 39 71.65% 19.30% 6.13% 2.92% IM10 1431 1029 297 82 23 71.91% 20.75% 5.73% 1.61% TS15 662 558 86 13 5 84.29% 12.99% 1.96% 0.76% TS17 393 316 57 14 6 80.41% 14.50% 3.56% 1.53% TS18 159 126 24 7 2 79.25% 15.09% 4.40% 1.26% TS19 536 380 109 42 5 70.90% 20.34% 7.84% 0.93% TS20 351 305 35 9 2 86.89% 9.97% 2.56% 0.57% TS21 380 324 41 10 5 85.26% 10.79% 2.63% 1.32% TS22 314 268 34 7 5 85.35% 10.83% 2.23% 1.59% TS23 549 463 75 8 3 84.34% 13.66% 1.46% 0.55% TS24 342 281 54 5 2 82.16% 15.79% 1.46% 0.58% TS26 350 295 45 7 3 84.29% 12.86% 2.00% 0.86% TS27 274 219 39 9 7 79.93% 14.23% 3.28% 2.55% -
[1] 国家质量监督检验检疫总局. 时间频率计量器具检定系统表: JJG 2007-2015[S]. 北京: 中国质检出版社, 2015. [2] Kun L, Felicitas A, Gerard P, et al. Evaluation of BeiDou time transfer over multiple inter-continental baselines towards UTC contribution[J]. Metrologia, 2018, 55(4): 513-525. doi: 10.1088/1681-7575/aac586 [3] Lombardi M. A NIST Disciplined Oscillator[C]. Proceedings of the NCSL International Workshop and Symposium, 2010. [4] Lombardi M A. A NIST Disciplined Oscillator: Delivering UTC(NIST) to the Calibration Laboratory[J]. NCSLI Measure, 2010, 5(4): 46-54. doi: 10.1080/19315775.2010.11721537 [5] Tomonari Suzuyama, Atsuko Okuda, Masaki Amemiya. Long-term properties evaluations of frequency remote calibration system using GPS[C]. Presentation of ATF2015. Beijing: National Institute of Metrology, 2015. [6] Defraigne P, Petit G. CGGTTS-Version 2E: an extended standard for GNSS Time Transfer[J]. Metrologia, 2015, 52(6): G1-G1. doi: 10.1088/0026-1394/52/6/G1 [7] Liang K, Zuo F, Pei C, et al. Real-Time Remote Calibration (RTRC) System for Time and Frequency[C]. IFCS-EFTF2013, 2013. [8] Jiang Z, Petit G. Time Transfer with GPS Satellites All in View[C]. Asia-Pacific Workshop on Time and Frequency. Beijing, 2004: 236–43. [9] Hamilton Technical Services, “Stable 32 user manual,” Technical Report, ID # 212944, Version 1.50, Mar. 2007, pp. 55-63. [10] Stanford Research System, “SR620 Universal Time Interval Counter,” Technical Report, Revision 2.7, Feb. 2006, pp. 1-5. [11] Symmetricom, “5125A Phase Noise Test Set Operations and Maintenance Manual,”Technical Report, DOC05125A, Rev A, Mar. 2009, pp. 60-61. [12] Symmetricom, “5071A Primary Frequency Standard Operating and Programming Manual,” Technical Report, 05071-90041, May 2001, pp. 6-5. [13] Kun L, Hang Y, Fei Z, et al. Disciplined oscillator system by UTC(NIM) for remote time and frequency traceability[C]. European Frequency & Time Forum. IEEE, 2015. [14] 梁坤, 顾杨义. 远程时间溯源示范体系-时间公报[EB/OL]. https://www.nmdc.ac.cn/u/cms/www/202012/28145204bfgw.pdf.