Volume 68 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
LI Jianshuang, MIAO Dongjing, LIU Yang, HE Mingzhao, LI Lianfu, JIANG Yuanlin, KANG Yao, WANG Deli, ZHU Jiaxiang. Overview of Research and Development of Large-Scale Advanced Metrology Technology[J]. Metrology Science and Technology, 2024, 68(2): 30-39. doi: 10.12338/j.issn.2096-9015.2023.0236
Citation: LI Jianshuang, MIAO Dongjing, LIU Yang, HE Mingzhao, LI Lianfu, JIANG Yuanlin, KANG Yao, WANG Deli, ZHU Jiaxiang. Overview of Research and Development of Large-Scale Advanced Metrology Technology[J]. Metrology Science and Technology, 2024, 68(2): 30-39. doi: 10.12338/j.issn.2096-9015.2023.0236

Overview of Research and Development of Large-Scale Advanced Metrology Technology

doi: 10.12338/j.issn.2096-9015.2023.0236
  • Received Date: 2023-10-20
  • Accepted Date: 2023-11-16
  • Rev Recd Date: 2023-12-10
  • Available Online: 2023-12-21
  • Publish Date: 2024-02-18
  • Large-scale metrology technology is crucial for high-precision measurement or calibration of large-sized objects' length, positional attitude, and shape parameters. Its applications span across industrial manufacturing, large-scale construction, and industrial measurement fields. This field is evolving with the progressive development of advanced optical technology, precision measurement techniques, data fusion technology, and engineering application technology. As a result, large-scale metrology technology is undergoing continuous innovation, leading to new advanced metrology techniques. These breakthroughs overcome the traditional constraints of single-value measurements and offline traceability in large-scale metrology, shifting towards composite parameters and in-situ traceability. This transition is part of a broader move towards digitalization, streamlining, and intelligent transformation in high-precision large-scale metrology. The article provides an overview of advanced measurement techniques in indoor industrial measurement and outdoor geodetic measurement within large-scale metrology. It offers insights into future development trends and presents new ideas for the advancement of large-scale metrology technology.
  • loading
  • [1]
    Schmitt R, Peterek M, Morse E, et al. Advances in large-scale metrology–review and future trends[J]. CIRP Annals, 2016, 65(2): 643-65. doi: 10.1016/j.cirp.2016.05.002
    [2]
    谭久彬. 超精密测量与高端装备制造质量[J]. 中国工业和信息化, 2020(6): 18-23. doi: 10.3969/j.issn.1674-9138.2020.06.003
    [3]
    朱美娜. 构建国家现代先进测量体系, 助推制造业转型升级[J]. 中国计量, 2018(9): 13-6,26.
    [4]
    徐成华. 国家质量基础设施技术体系建设的实践与思考[J]. 中国市场监管研究, 2020, 327(1): 23-26. doi: 10.3969/j.issn.1004-7645.2020.01.007
    [5]
    秦宜智. 实施《计量发展规划(2021-2035年)》全面开启加快计量发展新征程[J]. 中国计量, 2022(6): 5-9.
    [6]
    Pollinger F, Baselga S, Courde C, et al. The European GeoMetre project: developing enhanced large-scale dimensional metrology for geodesy[J]. J Applied Geomatics, 2023, 1: 1-11.
    [7]
    Muralikrishnan B, Phillips S, Sawyer D. Laser trackers for large-scale dimensional metrology: a review[J]. Precision Engineering, 2016, 44: 13-28. doi: 10.1016/j.precisioneng.2015.12.001
    [8]
    Cuypers W, Van Gestel N, Voet A, et al. Optical measurement techniques for mobile and large-scale dimensional metrology[J]. Optics and Lasers in Engineering, 2009, 47(3-4): 292-300. doi: 10.1016/j.optlaseng.2008.03.013
    [9]
    刘学德. 野外基线高精度激光测量环境参数补偿系统研制 [D]. 天津: 天津大学, 2019.
    [10]
    Meiners-Hagen K, Meyer T, Mildner J, et al. SI-traceable absolute distance measurement over more than 800 meters with sub-nanometer interferometry by two-color inline refractivity compensation[J]. Applied Physics Letters, 2017, 111(19): 191104. doi: 10.1063/1.5000569
    [11]
    Tomberg T, Fordell T, Jokela J, et al. Spectroscopic thermometry for long-distance surveying[J]. Appl Optics, 2017, 56(2): 239-246. doi: 10.1364/AO.56.000239
    [12]
    Rüeger J M. Electronic distance measurement: An introduction [M]. Berlin: Springer Science & Business Media, 2012.
    [13]
    刘学德, 缪东晶, 张京燕, 等. 1.2 km标准基线环境参数自动测量系统研制[J]. 计量学报, 2020, 41(8): 897-902. doi: 10.3969/j.issn.1000-1158.2020.08.01
    [14]
    陈杨, 李建双, 缪东晶, 等. 基于传感器阵列的野外基线环境参数自动测量系统研制[J]. 计量学报, 2018, 39(4): 455-460. doi: 10.3969/j.issn.1000-1158.2018.04.02
    [15]
    de La Serve M T, Wallerand J-P, Guillory J, et al. Arpent: un prototype de haute exactitude pour les mesures de grande distance[J]. Metrology, 2018, 154: 35-40.
    [16]
    Guillory J, Šmíd R, García-Márquez J, et al. High resolution kilometric range optical telemetry in air by radio frequency phase measurement[J]. Rev Sci Instrum, 2016, 87(7): 075105. doi: 10.1063/1.4954180
    [17]
    Guillory J, de La Serve M T, Truong D, et al. Uncertainty assessment of optical distance measurements at micrometer level accuracy for long-range applications[J]. IEEE Trans Instrum Meas, 2019, 68(6): 2260-2267. doi: 10.1109/TIM.2019.2902804
    [18]
    刘洋, 李建双, 赫明钊, 等. 大尺寸计量中双光梳绝对测距方法的研究进展[J]. 计量科学与技术, 2023, 67(4): 18-27.
    [19]
    Guillory J, Truong D, Wallerand J-P. Multilateration with Self-Calibration: Uncertainty Assessment, Experimental Measurements and Monte-Carlo Simulations[J]. Metrology, 2022, 2(2): 241-262. doi: 10.3390/metrology2020015
    [20]
    杨伟雷, 刘洋, 赫明钊, 等. 外差干涉相位测量中信号串扰误差与补偿方法研究[J]. 中国激光, 2023, 50(10): 83-94.
    [21]
    Kim S W. Combs rule[J]. Nat Photonics, 2009, 3(6): 313-314. doi: 10.1038/nphoton.2009.86
    [22]
    Fortier T , Baumann E . 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2019, 2(1): 280-S124.
    [23]
    Weimann C, Messner A, Baumgartner T, et al. Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs[J]. Optics Express, 2018, 26(26): 34305-34335. doi: 10.1364/OE.26.034305
    [24]
    Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018, 361(6402): eaan8083. doi: 10.1126/science.aan8083
    [25]
    Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Appl Optics, 2000, 39(30): 5512-5517. doi: 10.1364/AO.39.005512
    [26]
    Doloca N R, Meiners-Hagen K, Wedde M, et al. Absolute distance measurement system using a femtosecond laser as a modulator[J]. Meas Sci Technol, 2010, 21(11): 7.
    [27]
    Wei D, Takahashi S, Takamasu K, et al. Time-of-flight method using multiple pulse train interference as a time recorder[J]. Optics Express, 2011, 19(6): 4881-4889. doi: 10.1364/OE.19.004881
    [28]
    Cui M, Zeitouny M G, Bhattacharya N, et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Opt Lett, 2009, 34(13): 1982-1984. doi: 10.1364/OL.34.001982
    [29]
    Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 2006, 14(13): 5954-5960. doi: 10.1364/OE.14.005954
    [30]
    Wu H Z, Zhang F M, Liu T Y, et al. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser[J]. Optics Express, 2015, 23(24): 31582-31593. doi: 10.1364/OE.23.031582
    [31]
    Lee J, Kim S W, Kim Y J. Repetition rate multiplication of femtosecond light pulses using a phase-locked all-pass fiber resonator[J]. Optics Express, 2015, 23(8): 10117-10125. doi: 10.1364/OE.23.010117
    [32]
    Wu H Z, Zhang F M, Liu T Y, et al. Long distance measurement using optical sampling by cavity tuning[J]. Opt Lett, 2016, 41(10): 2366-2369. doi: 10.1364/OL.41.002366
    [33]
    Schuhler N, Salvade Y, Leveque S, et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement[J]. Opt Lett, 2006, 31(21): 3101-3103. doi: 10.1364/OL.31.003101
    [34]
    Zhu Z, Wu G. Dual-Comb Ranging[J]. Engineering, 2018, 4(6): 772-778. doi: 10.1016/j.eng.2018.10.002
    [35]
    Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nat Photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
    [36]
    Xie Z, Liu Y, Li J, et al. Influence of the interferometric spectral bandwidth on the precision of large-scale dual-comb ranging[J]. Measurement, 2023, 2: 112842.
    [37]
    Liu Y, Xia W, He M, et al. Experimental realization and characterization of a two–color dual–comb system for practical large–scale absolute distance measurements[J]. Optics and Lasers in Engineering, 2022, 151: 106900. doi: 10.1016/j.optlaseng.2021.106900
    [38]
    夏文泽, 刘洋, 赫明钊, 等. 双光梳非线性异步光学采样测距中关键参数的数值分析[J]. 物理学报, 2021, 70(18): 53-62.
    [39]
    Xie Z, Liu Y, He M, et al. Investigations on the non-ambiguity range extension of dual-comb ranging by repetition range variation [C]. SPIE: proceedings of the AOPC 2022: Optical Sensing and Imaging Technology, 2022.
    [40]
    Liu Y, Xie Z, He M, et al. Preliminary Investigations of Absolute Distance Measurement by the Dual-comb System with a Fiber Interferometric Scheme [C]. proceedings of the The 7th International Conference on Nanomanufacturing, 2021.
    [41]
    邓向瑞, 梁宝敏, 肖华杰, 等. 温度代表性误差对基线测距的影响[J]. 计量科学与技术, 2020(12): 7-11. doi: 10.3969/j.issn.2096-9015.2020.12.02
    [42]
    邾继贵, 郭思阳, 史慎东, 等. 面向先进装备制造业的室内空间测量定位系统[J]. 计测技术, 2018, 38(3): 91-98. doi: 10.11823/j.issn.1674-5795.2018.03.06
    [43]
    杨凌辉, 杨学友, 劳达宝, 等. 采用光平面交汇的大尺寸坐标测量方法[J]. 红外与激光工程, 2010, 39(6): 1105-1109. doi: 10.3969/j.issn.1007-2276.2010.06.026
    [44]
    Shi S, Yang L, Lin J, et al. Omnidirectional angle constraint based dynamic six-degree-of-freedom measurement for spacecraft rendezvous and docking simulation[J]. Measurement Science and Technology, 2017, 29(4): 1-9.
    [45]
    劳达宝, 崔成君, 王国民, 等. 飞秒激光跟踪仪跟踪光路的优化设计与分析[J]. 中国激光, 2019, 46(3): 184-191.
    [46]
    Wendt K, Franke M, Härtig F. Measuring large 3D structures using four portable tracking laser interferometers[J]. Measurement, 2012, 45(10): 2339-2345. doi: 10.1016/j.measurement.2011.09.020
    [47]
    Meiners-Hagen K, Bošnjakovic A, Köchert P, et al. Air index compensated interferometer as a prospective novel primary standard for baseline calibrations[J]. Measurement Science and Technology, 2015, 26(8): 084002. doi: 10.1088/0957-0233/26/8/084002
    [48]
    Liu Y, Röse A, Prellinger G, et al. Combining Harmonic Laser Beams by Fiber Components for Refractivity–Compensating Two-Color Interferometry[J]. J Lightwave Technol, 2020, 38(7): 1945-1952. doi: 10.1109/JLT.2019.2960473
    [49]
    Falaggis K , Ramirez-Andrade A H , Towers D , et al. Multi-wavelength phase unwrapping: a versatile tool for extending the measurement range, breaking the Nyquist limit, and encrypting optical communications[C]. SPIE Optical Engineering Applications Conference, 2018.
    [50]
    Coe P, Howell D, Nickerson R. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment[J]. Measurement Science and Technology, 2004, 15(11): 2175. doi: 10.1088/0957-0233/15/11/001
    [51]
    Guillory J, Truong D, Wallerand J-P, et al. Determination of the reference point of a radio telescope using a multilateration-based coordinate measurement prototype[J]. Precision Engineering, 2023, 4: 2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (213) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return