Volume 65 Issue 6
Jul.  2021
Turn off MathJax
Article Contents
DING Yongjin, CAO Shiying, SONG Wenxia, ZHU Lin, MENG Fei, LIN Baike, WANG Qiang, LIN Yige, FANG Zhanjun. Fast Control of the Carrier-Envelope Offset Frequency in a Femtosecond Optical Frequency Comb by using the Mach-Zehnder Interferometer with Electro-Optic Modulators[J]. Metrology Science and Technology, 2021, 65(6): 19-24. doi: 10.12338/j.issn.2096-9015.2020.9058
Citation: DING Yongjin, CAO Shiying, SONG Wenxia, ZHU Lin, MENG Fei, LIN Baike, WANG Qiang, LIN Yige, FANG Zhanjun. Fast Control of the Carrier-Envelope Offset Frequency in a Femtosecond Optical Frequency Comb by using the Mach-Zehnder Interferometer with Electro-Optic Modulators[J]. Metrology Science and Technology, 2021, 65(6): 19-24. doi: 10.12338/j.issn.2096-9015.2020.9058

Fast Control of the Carrier-Envelope Offset Frequency in a Femtosecond Optical Frequency Comb by using the Mach-Zehnder Interferometer with Electro-Optic Modulators

doi: 10.12338/j.issn.2096-9015.2020.9058
  • Available Online: 2021-05-07
  • Publish Date: 2021-07-08
  • We introduce the technique of narrow-linewidth optical frequency combs. A method based on the Mach-Zehnder Interferometer with electro-optic modulators was demonstrated to be able to fast control the carrier-envelope offset frequency. A relevant theoretical analysis and simulation were carried out. An experimental frequency comb based on the Mach-Zehnder Interferometer with electro-optic modulators was built in our lab. An ultra-stable laser with the linewidth of about 1 Hz was employed to beat with the comb to verify the capability of the Mach-Zehnder Interferometer. A carrier-envelope offset frequency shift of about 8.2 MHz was achieved. This method provides a technical solution for narrow-linewidth optical frequency combs.
  • loading
  • [1]
    吴翰钟. 光学频率梳的绝对距离测量研究[D]. 天津: 天津大学, 2017.
    [2]
    Foltynowicz A, Masłowski P, Ban T, et al. Optical frequency comb spectroscopy[J]. Faraday discussions, 2011(150): 23-31.
    [3]
    Li R, Wu Y, Rui Y, et al. Absolute Frequency Measurement of 6Li D Lines with kHz-Level Uncertainty[J]. Physical review letters, 2020, 124(6): 063002. doi: 10.1103/PhysRevLett.124.063002
    [4]
    Hu D, Wu Z, Cao H, et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications, 2021(482): 126566.
    [5]
    Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000
    [6]
    Fang S, Jiang Y, Cheng H, et al. Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb[J]. Chinese Physics B, 2015, 24(7): 242-245.
    [7]
    Niering M, Holzwarth R, Reichert J, et al. Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock[J]. Physical Review Letters, 2000, 84(24): 5496. doi: 10.1103/PhysRevLett.84.5496
    [8]
    Gohle C, Stein B, Schliesser A, et al. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra[J]. Physical review letters, 2007, 99(26): 263902. doi: 10.1103/PhysRevLett.99.263902
    [9]
    姜海峰. 超稳光生微波源研究进展[J]. 物理学报, 2018, 67(16): 83-105.
    [10]
    王强. 光钟——时间频率定义新趋势[J]. 计量技术, 2019(5): 11-13. doi: 10.3969/j.issn.1000-0771.2019.05.03
    [11]
    Bothwell T, Kedar D, Oelker E, et al. JILA SrI optical lattice clock with uncertainty of 2×10−18[J]. Metrologia, 2019, 56(6): 065004. doi: 10.1088/1681-7575/ab4089
    [12]
    Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 2×10−18 systematic uncertainty[J]. Physical review letters, 2016, 116(6): 063001. doi: 10.1103/PhysRevLett.116.063001
    [13]
    Brewer S M, Chen J S, Hankin A M, et al. Al+ 27 quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical review letters, 2019, 123(3): 033201. doi: 10.1103/PhysRevLett.123.033201
    [14]
    韩海年, 魏志义. 低相噪光学频率梳[J]. 物理, 2016, 45(7): 449-457. doi: 10.7693/wl20160705
    [15]
    Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
    [16]
    崔佳华, 林百科, 孟飞, 等. 相位锁定至超窄线宽激光的高相干性双光梳研究[J]. 红外与毫米波学报, 2020, 39(1): 25-31. doi: 10.11972/j.issn.1001-9014.2020.01.005
    [17]
    Shi H, Song Y, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics express, 2015, 23(11): 14057-14069. doi: 10.1364/OE.23.014057
    [18]
    Benko C, Ruehl A, Martin M J, et al. Full phase stabilization of a Yb: fiber femtosecond frequency comb via high-bandwidth transducers[J]. Optics letters, 2012, 37(12): 2196-2198. doi: 10.1364/OL.37.002196
    [19]
    Iwakuni K, Inaba H, Nakajima Y, et al. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control[J]. Optics express, 2012, 20(13): 13769-13776. doi: 10.1364/OE.20.013769
    [20]
    Hudson D D, Holman K W, Jones R J, et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Optics letters, 2005, 30(21): 2948-2950. doi: 10.1364/OL.30.002948
    [21]
    张颜艳. 掺铒光纤飞秒光梳及其在光频测量中的应用[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2018.
    [22]
    McFerran J J, Swann W C, Washburn B R, et al. Elimination of pump-induced frequency jitter on fiber-laser frequency combs[J]. Optics letters, 2006, 31(13): 1997-1999. doi: 10.1364/OL.31.001997
    [23]
    Vernaleken A, Schmidt B, Wolferstetter M, et al. Carrier-envelope frequency stabilization of a Ti: sapphire oscillator using different pump lasers[J]. Optics express, 2012, 20(16): 18387-18396. doi: 10.1364/OE.20.018387
    [24]
    Kim Y, Kim S, Kim Y J, et al. Er-doped fiber frequency comb with mHz relative linewidth[J]. Optics express, 2009, 17(14): 11972-11977. doi: 10.1364/OE.17.011972
    [25]
    Helbing F W, Steinmeyer G, Keller U, et al. Carrier-envelope offset dynamics of mode-locked lasers[J]. Optics letters, 2002, 27(3): 194-196. doi: 10.1364/OL.27.000194
    [26]
    Hänsel W, Giunta M, Lezius M, et al. Electro-optic modulator for rapid control of the carrier-envelope offset frequency[C]. CLEO: Science and Innovations. Optical Society of America, 2017: SF1C. 5.
    [27]
    Newbury N R, Washburn B R. Theory of the frequency comb output from a femtosecond fiber laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(11): 1388-1402. doi: 10.1109/JQE.2005.857657
    [28]
    Kuse N, Lee C C, Jiang J, et al. Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator[J]. Optics express, 2015, 23(19): 24342-24350. doi: 10.1364/OE.23.024342
    [29]
    毕然, 陈力荣, 李晋鹏, 等. 任意偏振光保偏的声光衍射效率增强系统的研究[J/OL]. 激光与光电子学进展, 2021, 58(1): 0123002.
    [30]
    Nakajima Y, Inaba H, Hosaka K, et al. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator[J]. Optics Express, 2010, 18(2): 1667-1676. doi: 10.1364/OE.18.001667
    [31]
    Ning K, Hou L, Fan S T, et al. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chinese Physics Letters, 2020, 37(6): 064202. doi: 10.1088/0256-307X/37/6/064202
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (433) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return