Volume 65 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
HE Longbiao, FENG Xiujuan, NIU Feng, YANG Ping. Longitudinal Piezoelectric Constant Measurement by Quasi-Static Method and Its Calibration[J]. Metrology Science and Technology, 2021, 65(11): 3-7. doi: 10.12338/j.issn.2096-9015.2020.0247
Citation: HE Longbiao, FENG Xiujuan, NIU Feng, YANG Ping. Longitudinal Piezoelectric Constant Measurement by Quasi-Static Method and Its Calibration[J]. Metrology Science and Technology, 2021, 65(11): 3-7. doi: 10.12338/j.issn.2096-9015.2020.0247

Longitudinal Piezoelectric Constant Measurement by Quasi-Static Method and Its Calibration

doi: 10.12338/j.issn.2096-9015.2020.0247
  • Available Online: 2021-08-18
  • Publish Date: 2021-11-01
  • Longitudinal piezoelectric constant is one of the key parameters of piezoelectric materials. The quasi-static method is most widely used to measure this constant. There are often differences in measurement results obtained using commercial instruments. A quasi-static measurement system was established with a dynamic force sensor, traceable to the primary standard. Factors affecting measurement were systematically studied, including the pretension force, the dynamic force, and the electrode shape. In order to obtain stable measurement results of the piezoelectric constant, the static force should be more than 10 N and the dynamic force no less than 0.1 N. Relatively more accurate measurement results of the piezoelectric constant were obtained using an electrode with a smaller spherical radius to clamp the piezoelectric material. Calibration of commercial longitudinal piezoelectric measuring instruments is discussed. The parameters to be calibrated should include the dynamic force, the static force, and the measurement error.
  • loading
  • [1]
    栾桂冬. 压电换能器和换能器阵[M]. 北京: 北京大学出版社, 2005.
    [2]
    Jiˇrí Fialka, Petr Beneš. Comparison of Methods for the Measurement of Piezoelectric Coefficients[J]. IEEE Transactions on instrumentation and measurement, 2013, 62(5): 1047-1057. doi: 10.1109/TIM.2012.2234576
    [3]
    Mark Stewart, Will Battrick, Markys Cain. Measuring Piezoelectric d33 Coefficients Using the Direct Method[R]. London: National Physical Laboratory, 2001: 1-11.
    [4]
    陈伟民, 李敏. 用动态位移响应测量压电常数的方法[J]. 压电与声光, 2001, 23(4): 323-325. doi: 10.3969/j.issn.1004-2474.2001.04.023
    [5]
    张瑞纹, 何龙标, 祝海江. 动态谐振法测量纵向压电应变常数的不确定度评定[J]. 计量学报, 2015, 36(4): 344-347. doi: 10.3969/j.issn.1000-1158.2015.04.02
    [6]
    何素娟, 聂建华, 沈建国. 提高压电换能器导纳圆测量精度的方法研究[J]. 压电与声光, 2012, 34(5): 725-729.
    [7]
    He Longbiao, Feng Xiujuan, KouKoulas Triantafillos, et al. Comparasion between Methods for the Meaasurement of the d33 Constant of Piezoelectric Materials[C]. ICSV25, Horoshima, Japan, 2018: 77-84.
    [8]
    He LB, Wu H, Zhou JL, et al. Factors and uncertainty evaluation of quasi-static method for measuring piezoelectric constant[C], Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves and Device Applications. Beijing, China, 2014: 259-262.
    [9]
    国家质检总局. 压电陶瓷材料性能测试方法性能参数的测试: GB/T 3389-2008[S]. 北京: 国家标准出版社, 2008.
    [10]
    潘潮, 陈守六, 金亨焕. 压电复常数准静态法测量研究[C]. 全国水声学学术会议. 大同, 2001: 186-188.
    [11]
    潘潮, 陈守六. 准静态法d33测量仪[J]. 应用声学, 1987, 6(1): 37-38. doi: 10.11684/j.issn.1000-310X.1987.01.009
    [12]
    国家市场监督管理总局. 准静态d33测量仪校准规范: JJF1732-2018[S]. 北京: 中国质检出版社, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (1293) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return