Citation: | GAN Jianghong, ZHANG Xinbao. An Enveloping Model of the Minimum Tolerance Zone Method for Evaluating Straightness in a Plane and the Associated Algorithm[J]. Metrology Science and Technology, 2021, 65(12): 30-34, 69. doi: 10.12338/j.issn.2096-9015.2020.0361 |
[1] |
S.T. Huang, K.C. Fan, John H. Wu. A new minimum zone method for evaluating straightness errors[J]. Precision Engineering, 1993, 15(3): 158-165. doi: 10.1016/0141-6359(93)90003-S
|
[2] |
S. Hossein Cheraghi, Huay S. Lim, Saied Motavalli. Straightness and flatness tolerance evaluation: an optimization approach[J]. Precision Engineering, 1996, 18(1): 30-37. doi: 10.1016/0141-6359(95)00033-X
|
[3] |
Orady E, Li S, Chen Y. Evaluation of Minimum Zone Straightness by a Nonlinear Optimization Method[J]. Journal of Manufacturing Science & Engineering, 2000, 122(4): 795-797.
|
[4] |
G.L. Samuel, M.S. Shunmugam. Evaluation of straightness and flatness error using computational geometric techniques[J]. Computer-Aided Design, 1999, 31(13): 829-843. doi: 10.1016/S0010-4485(99)00071-8
|
[5] |
Hermann, Gyula. Robust Convex Hull-based Algoritm for Straightness and Flatness Determination in Coordinate Measuring[J]. Acta Polytechnica Hungarica, 2007, 4(4): 111-120.
|
[6] |
Cho S, Kim J Y. Straightness and flatness evaluation using data envelopment analysis[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(5-8): 731-740. doi: 10.1007/s00170-012-3925-6
|
[7] |
赵辉. 一种求解直线度误差最小区域的新方法──"逐次逼近旋转法"[J]. 计量技术, 1995(6): 9-11.
|
[8] |
李秀明, 石照耀. 基于凸多边形的直线度误差的评定[J]. 机械科学与技术, 2008, 27(6): 736-738. doi: 10.3321/j.issn:1003-8728.2008.06.008
|
[9] |
薛小强. 基于近似凸壳的直线度误差评定方法[J]. 南京工程学院学报(自然科学版), 2009, 7(1): 20-24.
|
[10] |
张新宝, 张坤. 平面内直线度误差最小区域法的完备性研究[J]. 机械工程学报, 2012, 48(24): 14-18.
|
[11] |
廖平, 陆敬舜. 一种精确计算平面内直线度误差的方法——分割逼近法[J]. 计量技术, 1998(9): 10-12.
|
[12] |
Gosavi Abhijit, Cudney Elizabeth. Form Errors in Precision Metrology: A Survey of Measurement Techniques[J]. Quality Engineering, 2012(24):369-380.
|