Volume 65 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
GAN Jianghong, ZHANG Xinbao. An Enveloping Model of the Minimum Tolerance Zone Method for Evaluating Straightness in a Plane and the Associated Algorithm[J]. Metrology Science and Technology, 2021, 65(12): 30-34, 69. doi: 10.12338/j.issn.2096-9015.2020.0361
Citation: GAN Jianghong, ZHANG Xinbao. An Enveloping Model of the Minimum Tolerance Zone Method for Evaluating Straightness in a Plane and the Associated Algorithm[J]. Metrology Science and Technology, 2021, 65(12): 30-34, 69. doi: 10.12338/j.issn.2096-9015.2020.0361

An Enveloping Model of the Minimum Tolerance Zone Method for Evaluating Straightness in a Plane and the Associated Algorithm

doi: 10.12338/j.issn.2096-9015.2020.0361
  • Available Online: 2021-11-01
  • Publish Date: 2021-12-01
  • According to the geometrical description of straightness error presented in the national standard GB/T 11336-2004, a new enveloping model of the minimum tolerance zone method for evaluating straightness in a plain and a principle for judging envelop points are proposed in this paper. Based on the principle, a highly efficient algorithm is proposed to search for the envelope points. The proposed algorithm is suitable for searching for the envelope points of a mass points set. A comparison with a traditional method shows that the proposed algorithm had good completeness and produced reliable results. By means of simulation, sets of a million points were calculated using the algorithm and the costs of the algorithm were recorded. The result showed that the time complexity of the algorithm was O(N). The enveloping model proposed in this paper is simple and accurate.
  • loading
  • [1]
    S.T. Huang, K.C. Fan, John H. Wu. A new minimum zone method for evaluating straightness errors[J]. Precision Engineering, 1993, 15(3): 158-165. doi: 10.1016/0141-6359(93)90003-S
    [2]
    S. Hossein Cheraghi, Huay S. Lim, Saied Motavalli. Straightness and flatness tolerance evaluation: an optimization approach[J]. Precision Engineering, 1996, 18(1): 30-37. doi: 10.1016/0141-6359(95)00033-X
    [3]
    Orady E, Li S, Chen Y. Evaluation of Minimum Zone Straightness by a Nonlinear Optimization Method[J]. Journal of Manufacturing Science & Engineering, 2000, 122(4): 795-797.
    [4]
    G.L. Samuel, M.S. Shunmugam. Evaluation of straightness and flatness error using computational geometric techniques[J]. Computer-Aided Design, 1999, 31(13): 829-843. doi: 10.1016/S0010-4485(99)00071-8
    [5]
    Hermann, Gyula. Robust Convex Hull-based Algoritm for Straightness and Flatness Determination in Coordinate Measuring[J]. Acta Polytechnica Hungarica, 2007, 4(4): 111-120.
    [6]
    Cho S, Kim J Y. Straightness and flatness evaluation using data envelopment analysis[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(5-8): 731-740. doi: 10.1007/s00170-012-3925-6
    [7]
    赵辉. 一种求解直线度误差最小区域的新方法──"逐次逼近旋转法"[J]. 计量技术, 1995(6): 9-11.
    [8]
    李秀明, 石照耀. 基于凸多边形的直线度误差的评定[J]. 机械科学与技术, 2008, 27(6): 736-738. doi: 10.3321/j.issn:1003-8728.2008.06.008
    [9]
    薛小强. 基于近似凸壳的直线度误差评定方法[J]. 南京工程学院学报(自然科学版), 2009, 7(1): 20-24.
    [10]
    张新宝, 张坤. 平面内直线度误差最小区域法的完备性研究[J]. 机械工程学报, 2012, 48(24): 14-18.
    [11]
    廖平, 陆敬舜. 一种精确计算平面内直线度误差的方法——分割逼近法[J]. 计量技术, 1998(9): 10-12.
    [12]
    Gosavi Abhijit, Cudney Elizabeth. Form Errors in Precision Metrology: A Survey of Measurement Techniques[J]. Quality Engineering, 2012(24):369-380.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (612) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return