Volume 66 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHAO Yujia, LIAO Tianyi, FAN Peilei, LIANG Liang, ZHAO Haibo, SHEN Zhengsheng. A Perspective on Nucleic Acid Reference Materials[J]. Metrology Science and Technology, 2022, 66(2): 15-20. doi: 10.12338/j.issn.2096-9015.2020.0374
Citation: ZHAO Yujia, LIAO Tianyi, FAN Peilei, LIANG Liang, ZHAO Haibo, SHEN Zhengsheng. A Perspective on Nucleic Acid Reference Materials[J]. Metrology Science and Technology, 2022, 66(2): 15-20. doi: 10.12338/j.issn.2096-9015.2020.0374

A Perspective on Nucleic Acid Reference Materials

doi: 10.12338/j.issn.2096-9015.2020.0374
  • Available Online: 2022-01-15
  • Publish Date: 2022-02-18
  • Nucleic acid is the carrier of genetic information. With the rapid development of in vitro diagnostic technology based on nucleic acid amplification, nucleic acid detection is widely used in medical diagnosis, forensic identification, import and export inspection and quarantine, species evolution research, etc. Nucleic acid reference materials are a gold standard to ensure the accuracy and traceability of nucleic acid test results. Both the WHO and the Chinese Food and Drug Administration stipulate that in vitro diagnostic reagents need to use international and national reference materials or factory-level standards to guarantee the traceability and accuracy. The analysis of the carcinogenic mechanism of HER2, BRAF, EGFR and other gene mutations has prompted the listing of a series of targeted therapies such as trastuzumab, veilofenib, and rituximab, which has caused a large gap in Chinese nucleic acid reference materials. Due to the complex structure, easy degradation and large molecular weight of nucleic acid, it is difficult to meet the requirements of uniformity and stability. Therefore, development of nucleic acid reference materials is slow. This article briefly reviews preparation methods of nucleic acid reference materials and domestic and abroad research progress, for the efficient development of nucleic acid reference materials for in vitro diagnostics.
  • loading
  • [1]
    WATSON J D, CRICK F H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature, 1974, 248(5451): 765. doi: 10.1038/248765a0
    [2]
    PAI-DHUNGAT J. Kary mullis-inventor of PCR[J]. J. Assoc. Physicians. India., 2019, 67(9): 96.
    [3]
    KAZUYUKI M. PCR-based detection methods for single-nucleotide polymorphism or mutation: real-time pcr and its substantial contribution toward technological refinement[J]. Adv. Clin. Chem, 2017, 80: 45-72.
    [4]
    BEATA K, JÓZEF K, KAROLINA S, et al. Principles and applications of ligation mediated pcr methods for dna-based typing of microbial organisms[J]. Acta. Biochim. Pol, 2016, 63(1): 39-52.
    [5]
    HAPUARACHCHI C T, KATIE J M, BOWLER J W. Stool PCR may not be a substitute for enrichment culture for the detection of salmonella[J]. J. Med. Microbiol, 2019, 68(3): 395-397.
    [6]
    AMOUPOUR M, NEZAMZADEH F, BIALVAEI A Z, et al. Differentiation of Brucella abortus and B. melitensis biovars using PCR-RFLP and REP-PCR[J]. New Microbes New Infect, 2019, 32: 100589.
    [7]
    EHNERT S, LINNEMANN CAREN, BRAUN B, et al. One-step arms-pcr for the detection of snps-using the example of the padi4 gene[J]. Methods Protoc, 2019, 2(3): 63. doi: 10.3390/mps2030063
    [8]
    ROMSOS E L, VALLONE P M. Rapid pcr of str markers: applications to human identification[J]. Forensic. Sci. Int. Genet, 2015, 18: 90-99. doi: 10.1016/j.fsigen.2015.04.008
    [9]
    DAHIYA B, MEHTA P K. Detection of potential biomarkers associated with outrageous diseases and environmental pollutants by nanoparticle-based immuno-PCR assays[J]. Anal. Biochem., 2019, 587: 113444. doi: 10.1016/j.ab.2019.113444
    [10]
    MAGYAR T, GYURIS É, UJVÁRI B, et al. Genotyping of riemerella anatipestifer by eric-pcr and correlation with serotypes[J]. Avian. Pathol, 2019, 48(1): 12-16.
    [11]
    CHEN H. Microfluidics-based pcr for fusion transcript detection[J]. Methods Mol. Biol., 2016, 1392: 103-111.
    [12]
    KAKIZAWA S. A multiplex-pcr method for diagnosis of ay-group phytoplasmas[J]. Methods Mol. Biol, 2019, 1875: 143-149.
    [13]
    DAS S, RAY U, AKHTER I, et al. Evaluation of fliC-d based direct blood PCR assays for typhoid diagnosis[J]. BMC Microbiol, 2016, 16(1): 108. doi: 10.1186/s12866-016-0723-6
    [14]
    NIBA E T E, ROCHMAH M A, HARAHAP N I F, et al. Spinal muscular atrophy: new screening system with real-time mcop-pcr and pcr-rflp for smn1 deletion[J]. Kobe. J. Med. Sci., 2019, 65(2): 44-48.
    [15]
    HUALAN Z, YAN L, PEI W. Development of sybr green real-time pcr and nested rt-pcr for the detection of potato mop-top virus (pmtv) and viral surveys in progeny tubers derived from pmtv infected potato tubers[J]. Mol. Cell Probes, 2019, 47: 101438. doi: 10.1016/j.mcp.2019.101438
    [16]
    KOLTAS I S, EROGLU F, UZUN S, et al. A comparative analysis of different molecular targets using PCR for diagnosis of old world leishmaniasis[J]. Exp. Parasitol., 2016, 164: 43-48. doi: 10.1016/j.exppara.2016.02.007
    [17]
    HUILLIER A G L, LOMBOS E, TANG E, et al. Evaluation of altona diagnostics realstar zika virus reverse transcription-pcr test kit for zika virus pcr testing[J]. J. Clin. Microbiol, 2017, 55(5): 1576-1584. doi: 10.1128/JCM.02153-16
    [18]
    QIANWANG Z, MARTA M K. Evaluation of real-time PCR coupled with immunomagnetic separation or centrifugation for the detection of healthy and sanitizer-injured Salmonella spp. on mung bean sprouts[J]. Int. J. Food Microbiol., 2016, 222: 48-55. doi: 10.1016/j.ijfoodmicro.2016.01.013
    [19]
    董莲华, 李亮, 王晶. 转基因玉米pNK603质粒分子的构建与应用[J]. 农业生物技术学报, 2011, 19(5): 565-570.
    [20]
    WU G, WU Y, NIE S, et al. Real-time PCR method for detection of the transgenic rice event TT51-1[J]. Food Chemistry, 2010, 119(1): 417-422. doi: 10.1016/j.foodchem.2009.08.031
    [21]
    DELOBEL C, NOENS W, QUERCI M, et al. Event-specific method for the quantification of soybean line mon89788 using real-time PCR: validation report[R]. Joint Research Centre, Institute for Health and Consumer Protection, 2008.
    [22]
    隋志伟, 余笑波, 王晶, 等. 转基因水稻TT51-1标准物质的研制[J]. 计量学报, 2012, 33(5): 5.
    [23]
    陈桂芳, 欧阳艳艳, 杨佳怡, 等. 核酸标准物质测量方法研究进展[J]. 计量科学与技术, 2021, 65(6): 25-33. doi: 10.12338/j.issn.2096-9015.2020.9022
    [24]
    赵雨佳, 范培蕾, 梁亮, 等. 转基因作物的发展与检测分析[J]. 计量技术, 2019(10): 54-57.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (976) PDF downloads(195) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return