Volume 65 Issue 5
Jun.  2021
Turn off MathJax
Article Contents
ZHONG Ruilin, WU Di, WANG Jian, CAI Changqing, CHEN Hanghang, HU Manhong, JIAO Kai, DING Jing’an. Uncertainty Analysis of Center-of-Mass Measurement Methods for the Mass Standard[J]. Metrology Science and Technology, 2021, 65(5): 120-123, 131. doi: 10.12338/j.issn.2096-9015.2020.9016
Citation: ZHONG Ruilin, WU Di, WANG Jian, CAI Changqing, CHEN Hanghang, HU Manhong, JIAO Kai, DING Jing’an. Uncertainty Analysis of Center-of-Mass Measurement Methods for the Mass Standard[J]. Metrology Science and Technology, 2021, 65(5): 120-123, 131. doi: 10.12338/j.issn.2096-9015.2020.9016

Uncertainty Analysis of Center-of-Mass Measurement Methods for the Mass Standard

doi: 10.12338/j.issn.2096-9015.2020.9016
  • Available Online: 2021-04-30
  • Publish Date: 2021-06-24
  • Highly accurate mass measurements require correction of mass differences introduced by the difference in center-of-mass height between the measured weight and the reference weight and therefore require measurement of the center-of-mass height of the mass standard. The center-of-mass height can be obtained by placing the mass standard in different positions on the weighing bridge with different orientations and calculating the change in the indicated value of the mass measurement instrument. In this paper, the uncertainty assessment of the 2 center-of-mass height measurement methods is studied, the source of each uncertainty is analyzed, the uncertainty evaluation method is given and discussed in conjunction with examples.
  • loading
  • [1]
    OIML. Weights of classes E1, E2, F1, F2, M1, M1–2, M2, M2–3 and M3 Part 1: Metrological and Technical Requirements[S]. OIML R111, 2004.
    [2]
    OIML. Non-automatic weighing instruments Part 1: Metrological and Technical Requirements – Tests[S]. OIML R76, 2006.
    [3]
    姚弘, 陈利. 砝码: JJG 99-2006[S]. 北京: 中国计量出版社, 2007.
    [4]
    H E Almer, H F Swift. Gravitational configuration effect upon precision mass measurements[J]. Rev. Sci. Instrum., 1975, 46(9): 1174-1176. doi: 10.1063/1.1134431
    [5]
    M G Cox. The evaluation of key comparison data[J]. Metrologia, 2002, 39: 589-595. doi: 10.1088/0026-1394/39/6/10
    [6]
    X T Zhao, H Z Jiang, S T Zheng, et al. Precision gravity center position measurement system for heavy vehicles[J]. Key Engineering Materials, 2006, 315-136: 788-791.
    [7]
    王保贵, 张洪伟, 赵阳. 质心测量平台实现方法及精度分析[J]. 测试技术学报, 2008, 22(3): 198-202. doi: 10.3969/j.issn.1671-7449.2008.03.003
    [8]
    X Zhang, M Wang, W Tang. A flexible measurement technique for testing the mass and center of gravity of large-sized objects[J]. Meas. Sci, 2020, 31: 015006. doi: 10.1088/1361-6501/ab39ee
    [9]
    R S Davis. Device to locate the centre of mass of a test object to within a precision of micrometres[J]. Meas. Sci., 1995, 6: 227-229. doi: 10.1088/0957-0233/6/2/016
    [10]
    Zhong Ruilin, Lee Sungjun, Wang Jian. Research on Detcting the Center of a Weight[C]. XXI IMEKO Congress, Prague, 2015: 369-372.
    [11]
    倪育才. 实用测量不确定度评定[M]. 第2版. 北京: 中国计量出版社, 2008: 61-79.
    [12]
    A Picard, R S Davis, M Gläser, et al. Revised formula for the density of moist air (CIPM-2007)[J]. Metrologia, 2008, 45: 149-155. doi: 10.1088/0026-1394/45/2/004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (271) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return