Citation: | LI Ye, LIN Yige, WANG Qiang, YANG Tao, SUN Zhen, LU Bingkun, FANG Zhanjun. Ultra-Stable Laser Technology and its Realization in Strontium Optical Lattice Clock[J]. Metrology Science and Technology, 2021, 65(5): 62-66. DOI: 10.12338/j.issn.2096-9015.2020.9018 |
[1] |
Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division[J]. Nature Photonics, 2011, 5(7): 425-429. DOI: 10.1038/nphoton.2011.121
|
[2] |
Abbott B P, Abbott R, Abbott T D, et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J]. Physical Review Letters, 2016, 116(6): 061102. DOI: 10.1103/PhysRevLett.116.061102
|
[3] |
Predehl K, Schnatz H. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place[J]. Science, 2012, 336(6080): 441. DOI: 10.1126/science.1218442
|
[4] |
Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356. DOI: 10.1038/nphoton.2009.94
|
[5] |
Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Applied Physics B, 2006, 83(4): 531-536. DOI: 10.1007/s00340-006-2225-y
|
[6] |
Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 2006, 30(5): 053801.
|
[7] |
Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15[J]. Optics Letters, 2007, 32(6): 641-643. DOI: 10.1364/OL.32.000641
|
[8] |
Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10−16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161. DOI: 10.1038/nphoton.2010.313
|
[9] |
Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. DOI: 10.1038/nphoton.2012.217
|
[10] |
Häfner S, Falke S, Grebing C, et al. 8×10−17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9): 2112. DOI: 10.1364/OL.40.002112
|
[11] |
Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 2017, 116: 263202.
|
[12] |
Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
|
[13] |
Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level[J]. Journal of the Optical Society of America B Optical Physics, 1988, 5(4): S28.
|
[14] |
Birch K P, Downs M J. Correction to the Updated Edlén Equation for the Refractive Index of Air[J]. Metrologia, 2005, 31(4): 315-316.
|
[15] |
Roberts M, Taylor P, Gill P. Laser linewidth at the sub-Hertz level[R]. United Kingdom: British Library Document Supply Centre, 1999.
|
[16] |
Webster S A, Oxborrow M, Gill P. Vibration insensitive optical cavity[J]. Physical Review A, 2007, 75(1): 10064-10070.
|
[17] |
Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 1744-1747.
|
[18] |
Li Ye, Lin Yi-Ge, Wang Qiang, et al. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chinese Physics Letter, 2014, 31(2): 024207. DOI: 10.1088/0256-307X/31/2/024207
|
[19] |
Legero T, Kessler T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. Journal of the Optical Society of America B, 2010, 27: 914. DOI: 10.1364/JOSAB.27.000914
|
[20] |
Ma L S, Jungner P, Ye J, et al. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 1994, 19(21): 1777-1779. DOI: 10.1364/OL.19.001777
|
[1] | WANG Honghong, ZHAO Xinrui, HAN Xiao, LI Chunmeng, WANG Defa, WU Hai, BI Zhe. Sources of N2O Greenhouse Gases and Development in Analytical Techniques[J]. Metrology Science and Technology. DOI: 10.12338/j.issn.2096-9015.2024.0152 |
[2] | ZHOU Xirui, GU Renji, MA Ruimin, JIANG Wencan, LUO Shizhong, FENG Liuxing. Advances in Measurement Techniques and Standardization of Alzheimer's Disease Biomarkers[J]. Metrology Science and Technology, 2024, 68(9): 41-50. DOI: 10.12338/j.issn.2096-9015.2024.0054 |
[3] | XIN Yunfei, WANG Jin, ZHANG Cheng, LI Daifu, YE Zihan, PAN Yijie. Research Progress on Narrow Linewidth Lasers Based on Whispering Gallery Mode Microcavity[J]. Metrology Science and Technology, 2024, 68(5): 83-91. DOI: 10.12338/j.issn.2096-9015.2024.0092 |
[4] | DING Chaomin, LI Ke, YAN Yong, WANG Defa, XIAO Zhe, LIU Fan, ZHANG Xin, LI Qi, GUO Xiaoyan, ZHANG Zhengdong. Research Progress on Different Catalytic Techniques for Carbon Dioxide Reduction Reaction[J]. Metrology Science and Technology. DOI: 10.12338/j.issn.2096-9015.2024.0201 |
[5] | WANG Zhidong, SHEN Haiying, WU Xiao, GAO Yunhua. Case Analysis and Discussion on Nucleic Acid Extractor Calibration Techniques[J]. Metrology Science and Technology, 2023, 67(12): 13-19, 58. DOI: 10.12338/j.issn.2096-9015.2023.0316 |
[6] | ZHENG Han, WANG Haifeng. Research Progress of Soil Moisture Measurement Technology[J]. Metrology Science and Technology, 2022, 66(11): 31-36, 40. DOI: 10.12338/j.issn.2096-9015.2022.0169 |
[7] | WANG Fang, SHI Yushu, ZHANG Shu, LI Wei. Nanowire Width Metrology Technology Based on Lattice Constant of Silicon[J]. Metrology Science and Technology, 2022, 66(4): 13-18, 47. DOI: 10.12338/j.issn.2096-9015.2021.0587 |
[8] | WANG Min, YANG Ping, HE Longbiao, XING Guangzhen, FENG Xiujuan, WANG Ke. Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique[J]. Metrology Science and Technology, 2022, 66(4): 2-12. DOI: 10.12338/j.issn.2096-9015.2021.0625 |
[9] | SUI Zhiwei, WANG Ziquan, LIU Siyuan, FU Boqiang, ZHANG Ling, LI Hao. Research Progress and Development Trend of Metrological Techniques for Microbiology[J]. Metrology Science and Technology, 2021, 65(6): 54-59, 53. DOI: 10.12338/j.issn.2096-9015.2020.9036 |
[10] | DING Yongjin, CAO Shiying, SONG Wenxia, ZHU Lin, MENG Fei, LIN Baike, WANG Qiang, LIN Yige, FANG Zhanjun. Fast Control of the Carrier-Envelope Offset Frequency in a Femtosecond Optical Frequency Comb by using the Mach-Zehnder Interferometer with Electro-Optic Modulators[J]. Metrology Science and Technology, 2021, 65(6): 19-24. DOI: 10.12338/j.issn.2096-9015.2020.9058 |
1. |
邹萌,肖何,宋青果,肖翔鹏,沈凯,孙琪真,闫志君. 短腔型超窄线宽低噪声光纤激光技术综述. 激光与光电子学进展. 2023(15): 25-42 .
![]() |