Volume 65 Issue 5
Jun.  2021
Turn off MathJax
Article Contents
LI Ye, LIN Yige, WANG Qiang, YANG Tao, SUN Zhen, LU Bingkun, FANG Zhanjun. Ultra-Stable Laser Technology and its Realization in Strontium Optical Lattice Clock[J]. Metrology Science and Technology, 2021, 65(5): 62-66. doi: 10.12338/j.issn.2096-9015.2020.9018
Citation: LI Ye, LIN Yige, WANG Qiang, YANG Tao, SUN Zhen, LU Bingkun, FANG Zhanjun. Ultra-Stable Laser Technology and its Realization in Strontium Optical Lattice Clock[J]. Metrology Science and Technology, 2021, 65(5): 62-66. doi: 10.12338/j.issn.2096-9015.2020.9018

Ultra-Stable Laser Technology and its Realization in Strontium Optical Lattice Clock

doi: 10.12338/j.issn.2096-9015.2020.9018
  • Available Online: 2021-05-28
  • Publish Date: 2021-06-24
  • National Institute of Metrology (NIM) has realized the ultra-stable laser systems of hundred Hz, Hz and sub Hz magnitudes in 2008, 2011, and 2018. This paper focuses on the methods and conditions for the realization of ultra-stable lasers of various indices, discusses the reference cavity, fast feedback locking technique, and precision control technique to suppress the influence of external environment on the length of the reference cavity, and obtain 10−15 or higher frequency stability of the ultra-stable laser. Experimentally, an external cavity diode laser (ECDL) is locked to the 30-cm-long high-finesse ULE reference cavity, and the frequency stability of 3×10−16 is achieved.
  • loading
  • [1]
    Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division[J]. Nature Photonics, 2011, 5(7): 425-429. doi: 10.1038/nphoton.2011.121
    [2]
    Abbott B P, Abbott R, Abbott T D, et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
    [3]
    Predehl K, Schnatz H. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place[J]. Science, 2012, 336(6080): 441. doi: 10.1126/science.1218442
    [4]
    Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
    [5]
    Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Applied Physics B, 2006, 83(4): 531-536. doi: 10.1007/s00340-006-2225-y
    [6]
    Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 2006, 30(5): 053801.
    [7]
    Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15[J]. Optics Letters, 2007, 32(6): 641-643. doi: 10.1364/OL.32.000641
    [8]
    Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10−16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161. doi: 10.1038/nphoton.2010.313
    [9]
    Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. doi: 10.1038/nphoton.2012.217
    [10]
    Häfner S, Falke S, Grebing C, et al. 8×10−17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9): 2112. doi: 10.1364/OL.40.002112
    [11]
    Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 2017, 116: 263202.
    [12]
    Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
    [13]
    Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level[J]. Journal of the Optical Society of America B Optical Physics, 1988, 5(4): S28.
    [14]
    Birch K P, Downs M J. Correction to the Updated Edlén Equation for the Refractive Index of Air[J]. Metrologia, 2005, 31(4): 315-316.
    [15]
    Roberts M, Taylor P, Gill P. Laser linewidth at the sub-Hertz level[R]. United Kingdom: British Library Document Supply Centre, 1999.
    [16]
    Webster S A, Oxborrow M, Gill P. Vibration insensitive optical cavity[J]. Physical Review A, 2007, 75(1): 10064-10070.
    [17]
    Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 1744-1747.
    [18]
    Li Ye, Lin Yi-Ge, Wang Qiang, et al. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chinese Physics Letter, 2014, 31(2): 024207. doi: 10.1088/0256-307X/31/2/024207
    [19]
    Legero T, Kessler T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. Journal of the Optical Society of America B, 2010, 27: 914. doi: 10.1364/JOSAB.27.000914
    [20]
    Ma L S, Jungner P, Ye J, et al. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 1994, 19(21): 1777-1779. doi: 10.1364/OL.19.001777
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1434) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return