Volume 65 Issue 5
Jun.  2021
Turn off MathJax
Article Contents
GUO Wen, XU Hao, LIANG Weijun, LIU Ke, JIA Chao, GAO Qiulai. Measurement of Dielectric Properties of Materials in Millimeter-Wave Frequency Range[J]. Metrology Science and Technology, 2021, 65(5): 14-19, 45. doi: 10.12338/j.issn.2096-9015.2020.9020
Citation: GUO Wen, XU Hao, LIANG Weijun, LIU Ke, JIA Chao, GAO Qiulai. Measurement of Dielectric Properties of Materials in Millimeter-Wave Frequency Range[J]. Metrology Science and Technology, 2021, 65(5): 14-19, 45. doi: 10.12338/j.issn.2096-9015.2020.9020

Measurement of Dielectric Properties of Materials in Millimeter-Wave Frequency Range

doi: 10.12338/j.issn.2096-9015.2020.9020
  • Available Online: 2021-05-28
  • Publish Date: 2021-06-24
  • This paper systematically studied the measurement method of complex permittivity of materials in the millimeter-wave frequency range. Based on the free space-method, a two-tier calibration and the time-domain gating technology were proposed to characterize the dielectric property of materials in the broad frequency range of 75~110 GHz, and an open resonant cavity with a high-quality factor is developed based on the quasi-optical Fabry-Perot resonance principle. An inverse model of the dielectric properties of materials is developed using Gaussian beam theory, which is particularly suitable for the accurate measurement of low-loss dielectric materials. By comparing the measurement results of polyvinyl chloride (PVC) and fused quartz, the consistency of these two methods was verified. In addition, we proposed a de-embedding algorithm for multilayer materials, which can characterize the anisotropic dielectric properties for liquid crystals. The Gaussian beam theory was used to establish an inversion model for extracting the complex permittivity, which was especially suitable for the accurate measurement of low-loss materials.
  • loading
  • [1]
    WAYNE M, ALEXANDER S. Optimising a modified free-space permittivity characterisation method for civil engineering applications[J]. Journal of Geophysics & Engineering, 2016, 13(2): S9-S18.
    [2]
    KULKARNI S, JOSHI M S. Design and analysis of shielded vertically stacked ring resonator as complex permittivity sensor for petroleum oils[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 1-7. doi: 10.1109/TMTT.2015.2458578
    [3]
    COSTA J R, FERNANDES C A, GODI G, et al. Compact Ka-band lens antennas for LEO satellites[J]. IEEE Transactions on Antennas & Propagation, 2008, 56(5): 1251-1258.
    [4]
    WU X, ELEFTHERIADES G V, VAN DEVENTER-PERKINS T E. Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(3): 431-441. doi: 10.1109/22.910546
    [5]
    NORA M N H, FUGE G, TRIEU H K, et al. Miniaturized transmission-Line sensor for broadband dielectric characterization of biological liquids and cell suspensions[J]. IEEE Transactions on Microwave Theory & Techniques, 2015, 63(10): 3026-3033.
    [6]
    桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013, 8-10.
    [7]
    HUBER O, FASETH T, MAGERL G, et al. Dielectric characterization of RF-Printed circuit board materials by microstrip transmission lines and conductor-backed coplanar waveguides up to 110 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 237-244. doi: 10.1109/TMTT.2017.2750152
    [8]
    AWANG Z, ZAKI F A M, BABA N H, et al. A free-space method for complex permittivity measurement of bulk and thin film di-electrics at microwave frequencies[J]. 2013, 51: 307-328.
    [9]
    AFSAR M N, DING H. A novel open-resonator system for precise measurement of permittivity and loss-tangent[J]. IEEE Transactions on Instrumentation & Measurement, 2001, 50(2): 402-405.
    [10]
    胡大海, 赵锐, 杜刘革, 等. 太赫兹平板材料介电常数测试技术[J]. 微波学报, 2016, 32(5): 1-5.
    [11]
    唐宗熙, 张彪. 用自由空间法测试介质电磁参数[J]. 电子学报, 2006, 34(1): 189-192.
    [12]
    NICOLSON A M, ROSS G F. Measurement of the intrinsic properties of materials by time-domain techniques[J]. IEEE Transactions on Instrumentation & Measurement, 1970, 19(4): 377-382.
    [13]
    郭高凤, 李恩, 张其劭, 等. 3 mm准光腔内场和能量分布的模拟计算[J]. 电子学报, 2001, 29(7): 1000-1002.
    [14]
    KOMIYAMA B, KIYOKAWA M, MATSUI T. Open resonator for precision dielectric measurements in the 100 GHz band[J]. IEEE Transactions on Microwave Theory & Techniques, 1991, 39(10): 1792-1796.
    [15]
    YU P K, CULLEN A L. Measurement of permittivity by jeans of an open resonator. I. theoretical[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982, 380(1778): 49-71.
    [16]
    Darko K. Linear fractional curve fitting for measurement of high Q factors[J]. IEEE Transactions on Microwave Theory & Techniques, 1994, 42(7): 1149-1153.
    [17]
    JUAN R S, NOVA V, BACHILLER C, et al. Characterization of nematic liquid crystal at microwave frequencies using split-cylinder resonator method[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 2812-2820. doi: 10.1109/TMTT.2019.2916790
    [18]
    葛忆, 叶明旭, 杨军, 等. 液晶介电常数在微波至太赫兹频段测试技术[J]. 电子科技, 2017, 30(4): 123-127.
    [19]
    Havrilla M J, Nyquist D P. Electromagnetic characterization of layered materials via direct and de-embed methods[J]. IEEE Transactions on Instrumentation & Measurement, 2006, 55(1): 158-163.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (426) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return