Volume 65 Issue 5
Jun.  2021
Turn off MathJax
Article Contents
TAN Siyuan, LI Manli, FU Boqiang, DAI Xinhua, GONG Xiaoyun. Recent Advances in Single-Cell Mass Spectrometry Methods[J]. Metrology Science and Technology, 2021, 65(5): 20-29, 13. doi: 10.12338/j.issn.2096-9015.2020.9021
Citation: TAN Siyuan, LI Manli, FU Boqiang, DAI Xinhua, GONG Xiaoyun. Recent Advances in Single-Cell Mass Spectrometry Methods[J]. Metrology Science and Technology, 2021, 65(5): 20-29, 13. doi: 10.12338/j.issn.2096-9015.2020.9021

Recent Advances in Single-Cell Mass Spectrometry Methods

doi: 10.12338/j.issn.2096-9015.2020.9021
  • Available Online: 2021-05-10
  • Publish Date: 2021-06-24
  • The heterogeneity between individual cells is essential for the realization of various biological functions. Accurate measurement of biomolecules at the single-cell scale is beneficial to obtain microcosmic biological mechanisms that are scarcely acquired at the tissue scale. However, the measurement of biomolecules in single cells is extremely difficult due to the complex composition in individual cells, the extremely low content of substances, and the significant differences in concentration of different components. With its high sensitivity, high specificity, accurate quantitation, and structural identification capabilities, mass spectrometry technology has attracted much attention in single-cell analysis field in recent years. At present, research on single-cell mass spectrometry methods has focused on the development of ionization techniques and corresponding sample pre-treatment methods. From the perspectives of ionization techniques, there are mainly four categories: nano-electrospray ionization mass spectrometry (nanoESI-MS), laser desorption ionization mass spectrometry (LDI-MS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS). This review summarizes the recent developments of these methods and their future trends in metrology field.
  • loading
  • [1]
    ZENOBI R. Single-cell metabolomics: analytical and biological perspectives[J]. Science, 2013, 342(6163): 1201.
    XIONG X, ZHANG S, FANG X, et al. Recent advances in mass spectrometry based single cell analysis methods[J]. SCIENTIA SINICA Chimica, 2016, 46(2): 133-152. doi: 10.1360/N032015-00068
    JU-DUO W, JIA-FENG S, CHANG L, et al. Recent Advances in Single Cell Analysis Methods Based on Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 969-980. doi: 10.1016/S1872-2040(20)60038-X
    YIN L, ZHANG Z, LIU Y, et al. Recent advances in single-cell analysis by mass spectrometry[J]. Analyst, 2019, 144(3): 824-845. doi: 10.1039/C8AN01190G
    ZHANG L, VERTES A. Single‐cell mass spectrometry approaches to explore cellular heterogeneity[J]. Angewandte Chemie International Edition, 2018, 57(17): 4466-4477. doi: 10.1002/anie.201709719
    ALI A, ABOULEILA Y, SHIMIZU Y, et al. Single-cell metabolomics by mass spectrometry: advances, challenges, and future applications[J]. TrAC Trends in Analytical Chemistry, 2019, 120: 115436. doi: 10.1016/j.trac.2019.02.033
    GU C, ZHANG X, EWING A G. Comparison of disk and nano-tip electrodes for measurement of single-cell amperometry during exocytotic release[J]. Analytical Chemistry, 2020, 92(15): 10268-10273.
    LI Q, CHEN P, FAN Y, et al. Multicolor fluorescence detection-based microfluidic device for single-cell metabolomics: simultaneous quantitation of multiple small molecules in primary liver cells[J]. Analytical Chemistry, 2016, 88(17): 8610-8616. doi: 10.1021/acs.analchem.6b01775
    ARMBRECHT L, DITTRICH P S. Recent advances in the analysis of single cells[J]. Analytical Chemistry, 2017, 89(1): 2-21. doi: 10.1021/acs.analchem.6b04255
    KALTASHOV I A, PAWLOWSKI J W, YANG W, et al. LC/MS at the whole protein level: Studies of biomolecular structure and interactions using native LC/MS and cross-path reactive chromatography (XP-RC) MS[J]. Methods, 2018, 144: 14-26. doi: 10.1016/j.ymeth.2018.04.019
    WANG Y, SONG Y, TAO Y, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level[J]. Analytical Chemistry, 2016, 88(19): 9443-9450. doi: 10.1021/acs.analchem.6b01602
    YIN R, PRABHAKARAN V, LASKIN J. Quantitative extraction and mass spectrometry analysis at a single-cell level[J]. Analytical Chemistry, 2018, 90(13): 7937-7945. doi: 10.1021/acs.analchem.8b00551
    LIU R, PAN N, ZHU Y, et al. T-probe: an integrated microscale device for online in situ single cell analysis and metabolic profiling using mass spectrometry[J]. Analytical Chemistry, 2018, 90(18): 11078-11085. doi: 10.1021/acs.analchem.8b02927
    KOMPAUER M, HEILES S, SPENGLER B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution[J]. Nature Methods, 2017, 14(1): 90-96. doi: 10.1038/nmeth.4071
    HUA X, LI H-W, LONG Y-T. Investigation of silver nanoparticle induced lipids changes on a single cell surface by time-of-flight secondary ion mass spectrometry[J]. Analytical Chemistry, 2018, 90(2): 1072-1076. doi: 10.1021/acs.analchem.7b04591
    ZHANG Y, ZABINYAKOV N, MAJONIS D, et al. Tantalum oxide nanoparticle-based mass tag for mass cytometry[J]. Analytical Chemistry, 2020, 92(8): 5741-5749. doi: 10.1021/acs.analchem.9b04970
    DUNCAN K D, FYRESTAM J, LANEKOFF I. Advances in mass spectrometry based single-cell metabolomics[J]. Analyst, 2019, 144(3): 782-793. doi: 10.1039/C8AN01581C
    LAGEVEEN-KAMMEIJER G S, DE HAAN N, MOHAUPT P, et al. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples[J]. Nature communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8
    CAO Y, ZHANG L, ZHANG J, et al. Single cell on-probe derivatization-noncontact nano carbon fiber ionization: unraveling cellular heterogeneity of fatty alcohol and sterol metabolites[J]. Analytical Chemistry, 2020, 92(12): 8378-8385.
    OOMEN P E, AREF M A, KAYA I, et al. Chemical analysis of single cells[J]. Analytical Chemistry, 2018, 91(1): 588-621.
    ROOT K, WITTWER Y, BARYLYUK K, et al. Insight into signal response of protein ions in native ESI-MS from the analysis of model mixtures of covalently linked protein oligomers[J]. Journal of The American Society for Mass Spectrometry, 2017, 28(9): 1863-1875. doi: 10.1007/s13361-017-1690-3
    FUJII T, MATSUDA S, TEJEDOR M L, et al. Direct metabolomics for plant cells by live single-cell mass spectrometry[J]. Nature protocols, 2015, 10(9): 1445-1456. doi: 10.1038/nprot.2015.084
    ZHANG X C, ZANG Q, ZHAO H, et al. Combination of droplet extraction and Pico-ESI-MS allows the identification of metabolites from single cancer cells[J]. Analytical Chemistry, 2018, 90(16): 9897-9903. doi: 10.1021/acs.analchem.8b02098
    CONG Y, LIANG Y, MOTAMEDCHABOKI K, et al. Improved single-cell proteome coverage using narrow-bore packed nanoLC columns and ultrasensitive mass spectrometry[J]. Analytical Chemistry, 2020, 92(3): 2665-2671. doi: 10.1021/acs.analchem.9b04631
    NAKASHIMA T, WADA H, MORITA S, et al. Single-cell metabolite profiling of stalk and glandular cells of intact trichomes with internal electrode capillary pressure probe electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2016, 88(6): 3049-3057. doi: 10.1021/acs.analchem.5b03366
    ZHANG X-C, WEI Z-W, GONG X-Y, et al. Integrated droplet-based microextraction with ESI-MS for removal of matrix interference in single-cell analysis[J]. Scientific reports, 2016, 6(1): 1-9. doi: 10.1038/srep24730
    FENG J, ZHANG X, HUANG L, et al. Quantitation of glucose-phosphate in single cells by microwell-based nanoliter droplet microextraction and mass spectrometry[J]. Analytical Chemistry, 2019, 91(9): 5613-5620. doi: 10.1021/acs.analchem.8b05226
    WEI Z, XIONG X, GUO C, et al. Pulsed direct current electrospray: enabling systematic analysis of small volume sample by boosting sample economy[J]. Analytical Chemistry, 2015, 87(22): 11242-11248. doi: 10.1021/acs.analchem.5b02115
    ZHU Y, LIU R, YANG Z. Redesigning the T-probe for mass spectrometry analysis of online lysis of non-adherent single cells[J]. Analytica Chimica Acta, 2019, 1084: 53-59. doi: 10.1016/j.aca.2019.07.059
    LOMBARD-BANEK C, MOODY S A, MANZINI M C, et al. Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: Developing cell clones in live Xenopus laevis and Zebrafish embryos[J]. Analytical Chemistry, 2019, 91(7): 4797-4805. doi: 10.1021/acs.analchem.9b00345
    KAWAI T, OTA N, OKADA K, et al. Ultrasensitive single cell metabolomics by capillary electrophoresis–mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration[J]. Analytical Chemistry, 2019, 91(16): 10564-10572. doi: 10.1021/acs.analchem.9b01578
    TROUILLON R, PASSARELLI M K, WANG J, et al. Chemical analysis of single cells[J]. Analytical Chemistry, 2013, 85(2): 522-542. doi: 10.1021/ac303290s
    YA L, LU Z. Differences in ABCA1 R219K polymorphisms and serum indexes in Alzheimer and Parkinson Diseases in Northern China[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017, 23: 4591.
    ZENG J. Chinese curricula of medical science in the context of globalization[J]. International Journal of Higher Education, 2018, 7(2): 169-174. doi: 10.5430/ijhe.v7n2p169
    WANG J, WANG Z, LIU F, et al. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters[J]. Analytical Chemistry, 2018, 90(16): 10009-10015. doi: 10.1021/acs.analchem.8b02478
    WANG J, WANG Z, LIU F, et al. Mass spectrometry imaging of intact cholesterol in a mouse esophagus tissue section and mouse zygotes using VUV laser desorption/ionization method[J]. International Journal of Mass Spectrometry, 2018, 432: 9-13. doi: 10.1016/j.ijms.2018.06.008
    NIEHAUS M, SOLTWISCH J, BELOV M, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution[J]. Nature methods, 2019, 16(9): 925-931. doi: 10.1038/s41592-019-0536-2
    URBAN P L, JEFIMOVS K, AMANTONICO A, et al. High-density micro-arrays for mass spectrometry[J]. Lab on a Chip, 2010, 10(23): 3206-3209. doi: 10.1039/c0lc00211a
    GUILLAUME-GENTIL O, REY T, KIEFER P, et al. Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy[J]. Analytical Chemistry, 2017, 89(9): 5017-5023. doi: 10.1021/acs.analchem.7b00367
    NEUMANN E K, COMI T J, RUBAKHIN S S, et al. Lipid heterogeneity between astrocytes and neurons revealed by single‐cell MALDI‐MS combined with immunocytochemical classification[J]. Angewandte Chemie International Edition, 2019, 58(18): 5910-5914. doi: 10.1002/anie.201812892
    SVATOS A. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging[M]. ACS Publications. 2011.
    LANNI E J, RUBAKHIN S S, SWEEDLER J V. Mass spectrometry imaging and profiling of single cells[J]. Journal of proteomics, 2012, 75(16): 5036-5051. doi: 10.1016/j.jprot.2012.03.017
    ATHWAL H K, LOMBAERT I M. 3D organoid formation from the murine salivary gland cell line SIMS[J]. Bio-protocol, 2019, 9(19): e3386.
    VOLLNHALS F, AUDINOT J-N, WIRTZ T, et al. Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity–hue–saturation and Laplacian pyramid methods for image fusion[J]. Analytical Chemistry, 2017, 89(20): 10702-10710. doi: 10.1021/acs.analchem.7b01256
    PASSARELLI M K, PIRKL A, MOELLERS R, et al. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power[J]. Nature Methods, 2017, 14(12): 1175-1183. doi: 10.1038/nmeth.4504
    VANBELLINGEN Q P, ELIE N, ELLER M J, et al. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions[J]. Rapid Communications in Mass Spectrometry, 2015, 29(13): 1187-1195. doi: 10.1002/rcm.7210
    TIAN H, SIX D A, KRUCKER T, et al. Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry[J]. Analytical Chemistry, 2017, 89(9): 5050-5057. doi: 10.1021/acs.analchem.7b00466
    SHENG L, CAI L, WANG J, et al. Simultaneous imaging of newly synthesized proteins and lipids in single cell by TOF-SIMS[J]. International Journal of Mass Spectrometry, 2017, 421: 238-244. doi: 10.1016/j.ijms.2017.07.008
    THOMEN A L, NAJAFINOBAR N, PENEN F, et al. Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles[J]. ACS Nano, 2020, 14(4): 4316-4325. doi: 10.1021/acsnano.9b09804
    LIU R, WU P, YANG L, et al. Inductively coupled plasma mass spectrometry‐based immunoassay: A review[J]. Mass Spectrometry Reviews, 2014, 33(5): 373-393. doi: 10.1002/mas.21391
    PRöFROCK D, PRANGE A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends[J]. Applied Spectroscopy, 2012, 66(8): 843-868. doi: 10.1366/12-06681
    BINGS N H, BOGAERTS A, BROEKAERT J A. Atomic spectroscopy[J]. Analytical Chemistry, 2013, 85(2): 670-704. doi: 10.1021/ac3031459
    LIU Z, LI X, XIAO G, et al. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review[J]. TrAC Trends in Analytical Chemistry, 2017, 93: 78-101. doi: 10.1016/j.trac.2017.05.008
    POZEBON D, SCHEFFLER G, DRESSLER V. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(5): 890-919. doi: 10.1039/C7JA00026J
    ZHANG C, WU F, ZHANG X. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(10): 1304-1307. doi: 10.1039/b205623b
    BENDALL S C, SIMONDS E F, QIU P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum[J]. Science, 2011, 332(6030): 687-696. doi: 10.1126/science.1198704
    YAO H, ZHAO H, ZHAO X, et al. Label-free Mass Cytometry for Unveiling Cellular Metabolic Heterogeneity[J]. Analytical Chemistry, 2019, 91(15): 9777-9783. doi: 10.1021/acs.analchem.9b01419
    GOOD Z, BORGES L, GONZALEZ N V, et al. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells[J]. Nature Biotechnology, 2019, 37(3): 259-266. doi: 10.1038/s41587-019-0033-2
    ZHANG X, LIU R, SHU Q, et al. Quantitative analysis of multiple proteins of different invasive tumor cell lines at the same single‐cell level[J]. Small, 2018, 14(17): 1703684. doi: 10.1002/smll.201703684
    XU S, LIU M, BAI Y, et al. Multi‐Dimensional Organic Mass Cytometry: Simultaneous Analysis of Proteins and Metabolites on Single Cells[J]. Angewandte Chemie, 2021, 133(4): 1834-1840. doi: 10.1002/ange.202009682
    XU S, XUE J, BAI Y, et al. High-Throughput Single-Cell Immunoassay in the Cellular Native Environment Using Online Desalting Dual-Spray Mass Spectrometry[J]. Analytical Chemistry, 2020, 92(24): 15854-15861. doi: 10.1021/acs.analchem.0c03167
    FANG X, XIE J, CHU S, et al. Quadrupole-linear ion trap tandem mass spectrometry system for clinical biomarker analysis[J]. Engineering, 2021.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1867) PDF downloads(270) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint