Citation: | TAN Siyuan, LI Manli, FU Boqiang, DAI Xinhua, GONG Xiaoyun. Recent Advances in Single-Cell Mass Spectrometry Methods[J]. Metrology Science and Technology, 2021, 65(5): 20-29, 13. doi: 10.12338/j.issn.2096-9015.2020.9021 |
[1] |
ZENOBI R. Single-cell metabolomics: analytical and biological perspectives[J]. Science, 2013, 342(6163): 1201.
|
[2] |
XIONG X, ZHANG S, FANG X, et al. Recent advances in mass spectrometry based single cell analysis methods[J]. SCIENTIA SINICA Chimica, 2016, 46(2): 133-152. doi: 10.1360/N032015-00068
|
[3] |
JU-DUO W, JIA-FENG S, CHANG L, et al. Recent Advances in Single Cell Analysis Methods Based on Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 969-980. doi: 10.1016/S1872-2040(20)60038-X
|
[4] |
YIN L, ZHANG Z, LIU Y, et al. Recent advances in single-cell analysis by mass spectrometry[J]. Analyst, 2019, 144(3): 824-845. doi: 10.1039/C8AN01190G
|
[5] |
ZHANG L, VERTES A. Single‐cell mass spectrometry approaches to explore cellular heterogeneity[J]. Angewandte Chemie International Edition, 2018, 57(17): 4466-4477. doi: 10.1002/anie.201709719
|
[6] |
ALI A, ABOULEILA Y, SHIMIZU Y, et al. Single-cell metabolomics by mass spectrometry: advances, challenges, and future applications[J]. TrAC Trends in Analytical Chemistry, 2019, 120: 115436. doi: 10.1016/j.trac.2019.02.033
|
[7] |
GU C, ZHANG X, EWING A G. Comparison of disk and nano-tip electrodes for measurement of single-cell amperometry during exocytotic release[J]. Analytical Chemistry, 2020, 92(15): 10268-10273.
|
[8] |
LI Q, CHEN P, FAN Y, et al. Multicolor fluorescence detection-based microfluidic device for single-cell metabolomics: simultaneous quantitation of multiple small molecules in primary liver cells[J]. Analytical Chemistry, 2016, 88(17): 8610-8616. doi: 10.1021/acs.analchem.6b01775
|
[9] |
ARMBRECHT L, DITTRICH P S. Recent advances in the analysis of single cells[J]. Analytical Chemistry, 2017, 89(1): 2-21. doi: 10.1021/acs.analchem.6b04255
|
[10] |
KALTASHOV I A, PAWLOWSKI J W, YANG W, et al. LC/MS at the whole protein level: Studies of biomolecular structure and interactions using native LC/MS and cross-path reactive chromatography (XP-RC) MS[J]. Methods, 2018, 144: 14-26. doi: 10.1016/j.ymeth.2018.04.019
|
[11] |
WANG Y, SONG Y, TAO Y, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level[J]. Analytical Chemistry, 2016, 88(19): 9443-9450. doi: 10.1021/acs.analchem.6b01602
|
[12] |
YIN R, PRABHAKARAN V, LASKIN J. Quantitative extraction and mass spectrometry analysis at a single-cell level[J]. Analytical Chemistry, 2018, 90(13): 7937-7945. doi: 10.1021/acs.analchem.8b00551
|
[13] |
LIU R, PAN N, ZHU Y, et al. T-probe: an integrated microscale device for online in situ single cell analysis and metabolic profiling using mass spectrometry[J]. Analytical Chemistry, 2018, 90(18): 11078-11085. doi: 10.1021/acs.analchem.8b02927
|
[14] |
KOMPAUER M, HEILES S, SPENGLER B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution[J]. Nature Methods, 2017, 14(1): 90-96. doi: 10.1038/nmeth.4071
|
[15] |
HUA X, LI H-W, LONG Y-T. Investigation of silver nanoparticle induced lipids changes on a single cell surface by time-of-flight secondary ion mass spectrometry[J]. Analytical Chemistry, 2018, 90(2): 1072-1076. doi: 10.1021/acs.analchem.7b04591
|
[16] |
ZHANG Y, ZABINYAKOV N, MAJONIS D, et al. Tantalum oxide nanoparticle-based mass tag for mass cytometry[J]. Analytical Chemistry, 2020, 92(8): 5741-5749. doi: 10.1021/acs.analchem.9b04970
|
[17] |
DUNCAN K D, FYRESTAM J, LANEKOFF I. Advances in mass spectrometry based single-cell metabolomics[J]. Analyst, 2019, 144(3): 782-793. doi: 10.1039/C8AN01581C
|
[18] |
LAGEVEEN-KAMMEIJER G S, DE HAAN N, MOHAUPT P, et al. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples[J]. Nature communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8
|
[19] |
CAO Y, ZHANG L, ZHANG J, et al. Single cell on-probe derivatization-noncontact nano carbon fiber ionization: unraveling cellular heterogeneity of fatty alcohol and sterol metabolites[J]. Analytical Chemistry, 2020, 92(12): 8378-8385.
|
[20] |
OOMEN P E, AREF M A, KAYA I, et al. Chemical analysis of single cells[J]. Analytical Chemistry, 2018, 91(1): 588-621.
|
[21] |
ROOT K, WITTWER Y, BARYLYUK K, et al. Insight into signal response of protein ions in native ESI-MS from the analysis of model mixtures of covalently linked protein oligomers[J]. Journal of The American Society for Mass Spectrometry, 2017, 28(9): 1863-1875. doi: 10.1007/s13361-017-1690-3
|
[22] |
FUJII T, MATSUDA S, TEJEDOR M L, et al. Direct metabolomics for plant cells by live single-cell mass spectrometry[J]. Nature protocols, 2015, 10(9): 1445-1456. doi: 10.1038/nprot.2015.084
|
[23] |
ZHANG X C, ZANG Q, ZHAO H, et al. Combination of droplet extraction and Pico-ESI-MS allows the identification of metabolites from single cancer cells[J]. Analytical Chemistry, 2018, 90(16): 9897-9903. doi: 10.1021/acs.analchem.8b02098
|
[24] |
CONG Y, LIANG Y, MOTAMEDCHABOKI K, et al. Improved single-cell proteome coverage using narrow-bore packed nanoLC columns and ultrasensitive mass spectrometry[J]. Analytical Chemistry, 2020, 92(3): 2665-2671. doi: 10.1021/acs.analchem.9b04631
|
[25] |
NAKASHIMA T, WADA H, MORITA S, et al. Single-cell metabolite profiling of stalk and glandular cells of intact trichomes with internal electrode capillary pressure probe electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2016, 88(6): 3049-3057. doi: 10.1021/acs.analchem.5b03366
|
[26] |
ZHANG X-C, WEI Z-W, GONG X-Y, et al. Integrated droplet-based microextraction with ESI-MS for removal of matrix interference in single-cell analysis[J]. Scientific reports, 2016, 6(1): 1-9. doi: 10.1038/srep24730
|
[27] |
FENG J, ZHANG X, HUANG L, et al. Quantitation of glucose-phosphate in single cells by microwell-based nanoliter droplet microextraction and mass spectrometry[J]. Analytical Chemistry, 2019, 91(9): 5613-5620. doi: 10.1021/acs.analchem.8b05226
|
[28] |
WEI Z, XIONG X, GUO C, et al. Pulsed direct current electrospray: enabling systematic analysis of small volume sample by boosting sample economy[J]. Analytical Chemistry, 2015, 87(22): 11242-11248. doi: 10.1021/acs.analchem.5b02115
|
[29] |
ZHU Y, LIU R, YANG Z. Redesigning the T-probe for mass spectrometry analysis of online lysis of non-adherent single cells[J]. Analytica Chimica Acta, 2019, 1084: 53-59. doi: 10.1016/j.aca.2019.07.059
|
[30] |
LOMBARD-BANEK C, MOODY S A, MANZINI M C, et al. Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: Developing cell clones in live Xenopus laevis and Zebrafish embryos[J]. Analytical Chemistry, 2019, 91(7): 4797-4805. doi: 10.1021/acs.analchem.9b00345
|
[31] |
KAWAI T, OTA N, OKADA K, et al. Ultrasensitive single cell metabolomics by capillary electrophoresis–mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration[J]. Analytical Chemistry, 2019, 91(16): 10564-10572. doi: 10.1021/acs.analchem.9b01578
|
[32] |
TROUILLON R, PASSARELLI M K, WANG J, et al. Chemical analysis of single cells[J]. Analytical Chemistry, 2013, 85(2): 522-542. doi: 10.1021/ac303290s
|
[33] |
YA L, LU Z. Differences in ABCA1 R219K polymorphisms and serum indexes in Alzheimer and Parkinson Diseases in Northern China[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017, 23: 4591.
|
[34] |
ZENG J. Chinese curricula of medical science in the context of globalization[J]. International Journal of Higher Education, 2018, 7(2): 169-174. doi: 10.5430/ijhe.v7n2p169
|
[35] |
WANG J, WANG Z, LIU F, et al. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters[J]. Analytical Chemistry, 2018, 90(16): 10009-10015. doi: 10.1021/acs.analchem.8b02478
|
[36] |
WANG J, WANG Z, LIU F, et al. Mass spectrometry imaging of intact cholesterol in a mouse esophagus tissue section and mouse zygotes using VUV laser desorption/ionization method[J]. International Journal of Mass Spectrometry, 2018, 432: 9-13. doi: 10.1016/j.ijms.2018.06.008
|
[37] |
NIEHAUS M, SOLTWISCH J, BELOV M, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution[J]. Nature methods, 2019, 16(9): 925-931. doi: 10.1038/s41592-019-0536-2
|
[38] |
URBAN P L, JEFIMOVS K, AMANTONICO A, et al. High-density micro-arrays for mass spectrometry[J]. Lab on a Chip, 2010, 10(23): 3206-3209. doi: 10.1039/c0lc00211a
|
[39] |
GUILLAUME-GENTIL O, REY T, KIEFER P, et al. Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy[J]. Analytical Chemistry, 2017, 89(9): 5017-5023. doi: 10.1021/acs.analchem.7b00367
|
[40] |
NEUMANN E K, COMI T J, RUBAKHIN S S, et al. Lipid heterogeneity between astrocytes and neurons revealed by single‐cell MALDI‐MS combined with immunocytochemical classification[J]. Angewandte Chemie International Edition, 2019, 58(18): 5910-5914. doi: 10.1002/anie.201812892
|
[41] |
SVATOS A. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging[M]. ACS Publications. 2011.
|
[42] |
LANNI E J, RUBAKHIN S S, SWEEDLER J V. Mass spectrometry imaging and profiling of single cells[J]. Journal of proteomics, 2012, 75(16): 5036-5051. doi: 10.1016/j.jprot.2012.03.017
|
[43] |
ATHWAL H K, LOMBAERT I M. 3D organoid formation from the murine salivary gland cell line SIMS[J]. Bio-protocol, 2019, 9(19): e3386.
|
[44] |
VOLLNHALS F, AUDINOT J-N, WIRTZ T, et al. Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity–hue–saturation and Laplacian pyramid methods for image fusion[J]. Analytical Chemistry, 2017, 89(20): 10702-10710. doi: 10.1021/acs.analchem.7b01256
|
[45] |
PASSARELLI M K, PIRKL A, MOELLERS R, et al. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power[J]. Nature Methods, 2017, 14(12): 1175-1183. doi: 10.1038/nmeth.4504
|
[46] |
VANBELLINGEN Q P, ELIE N, ELLER M J, et al. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions[J]. Rapid Communications in Mass Spectrometry, 2015, 29(13): 1187-1195. doi: 10.1002/rcm.7210
|
[47] |
TIAN H, SIX D A, KRUCKER T, et al. Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry[J]. Analytical Chemistry, 2017, 89(9): 5050-5057. doi: 10.1021/acs.analchem.7b00466
|
[48] |
SHENG L, CAI L, WANG J, et al. Simultaneous imaging of newly synthesized proteins and lipids in single cell by TOF-SIMS[J]. International Journal of Mass Spectrometry, 2017, 421: 238-244. doi: 10.1016/j.ijms.2017.07.008
|
[49] |
THOMEN A L, NAJAFINOBAR N, PENEN F, et al. Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles[J]. ACS Nano, 2020, 14(4): 4316-4325. doi: 10.1021/acsnano.9b09804
|
[50] |
LIU R, WU P, YANG L, et al. Inductively coupled plasma mass spectrometry‐based immunoassay: A review[J]. Mass Spectrometry Reviews, 2014, 33(5): 373-393. doi: 10.1002/mas.21391
|
[51] |
PRöFROCK D, PRANGE A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends[J]. Applied Spectroscopy, 2012, 66(8): 843-868. doi: 10.1366/12-06681
|
[52] |
BINGS N H, BOGAERTS A, BROEKAERT J A. Atomic spectroscopy[J]. Analytical Chemistry, 2013, 85(2): 670-704. doi: 10.1021/ac3031459
|
[53] |
LIU Z, LI X, XIAO G, et al. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: a review[J]. TrAC Trends in Analytical Chemistry, 2017, 93: 78-101. doi: 10.1016/j.trac.2017.05.008
|
[54] |
POZEBON D, SCHEFFLER G, DRESSLER V. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(5): 890-919. doi: 10.1039/C7JA00026J
|
[55] |
ZHANG C, WU F, ZHANG X. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(10): 1304-1307. doi: 10.1039/b205623b
|
[56] |
BENDALL S C, SIMONDS E F, QIU P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum[J]. Science, 2011, 332(6030): 687-696. doi: 10.1126/science.1198704
|
[57] |
YAO H, ZHAO H, ZHAO X, et al. Label-free Mass Cytometry for Unveiling Cellular Metabolic Heterogeneity[J]. Analytical Chemistry, 2019, 91(15): 9777-9783. doi: 10.1021/acs.analchem.9b01419
|
[58] |
GOOD Z, BORGES L, GONZALEZ N V, et al. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells[J]. Nature Biotechnology, 2019, 37(3): 259-266. doi: 10.1038/s41587-019-0033-2
|
[59] |
ZHANG X, LIU R, SHU Q, et al. Quantitative analysis of multiple proteins of different invasive tumor cell lines at the same single‐cell level[J]. Small, 2018, 14(17): 1703684. doi: 10.1002/smll.201703684
|
[60] |
XU S, LIU M, BAI Y, et al. Multi‐Dimensional Organic Mass Cytometry: Simultaneous Analysis of Proteins and Metabolites on Single Cells[J]. Angewandte Chemie, 2021, 133(4): 1834-1840. doi: 10.1002/ange.202009682
|
[61] |
XU S, XUE J, BAI Y, et al. High-Throughput Single-Cell Immunoassay in the Cellular Native Environment Using Online Desalting Dual-Spray Mass Spectrometry[J]. Analytical Chemistry, 2020, 92(24): 15854-15861. doi: 10.1021/acs.analchem.0c03167
|
[62] |
FANG X, XIE J, CHU S, et al. Quadrupole-linear ion trap tandem mass spectrometry system for clinical biomarker analysis[J]. Engineering, 2021.
|