Volume 65 Issue 6
Jul.  2021
Turn off MathJax
Article Contents
CHEN Guifang, OUYANG Yanyan, YANG Jiayi, GAO Yunhua. Research Progress on Common Measurement Methods of Nucleic Acid Reference Materials[J]. Metrology Science and Technology, 2021, 65(6): 25-33. doi: 10.12338/j.issn.2096-9015.2020.9022
Citation: CHEN Guifang, OUYANG Yanyan, YANG Jiayi, GAO Yunhua. Research Progress on Common Measurement Methods of Nucleic Acid Reference Materials[J]. Metrology Science and Technology, 2021, 65(6): 25-33. doi: 10.12338/j.issn.2096-9015.2020.9022

Research Progress on Common Measurement Methods of Nucleic Acid Reference Materials

doi: 10.12338/j.issn.2096-9015.2020.9022
  • Available Online: 2021-06-08
  • Publish Date: 2021-07-08
  • A great variety of nucleic acid reference materials have been developed to improve the accuracy of nucleic acid measurement. A reference material is a “measuring instrument” that can ensure the accuracy and traceability of measurement, with the functions of reproducing, preserving, and disseminating measurement values. Reference materials can provide a frame of reference for quality control of qualitative and quantitative detection processes for nucleic acid. Accurate and reliable certification methods are an important basis for the development of reference materials. This article provides details on several methods of measuring nucleic acid reference materials, with a focus on the principles and application characteristics of the methods and a discussion on influencing factors that may affect the measurement.
  • loading
  • [1]
    SOMANATH B, NATALIE C, THOMAS M, et al. Comparison of Methods for Accurate Quantification of DNA Mass Concentration with Traceability to the International System of Units[J]. Analytical Chemistry, 2010, 82(17): 7185-7192. doi: 10.1021/ac100845m
    [2]
    HOLDEN M J, HAYNES R J, RABB S A, et al. Factors Affecting Quantification of Total DNA by UV Spectroscopy and PicoGreen Fluorescence[J]. J Agric Food Chem, 2009, 57(16): 7221-7226. doi: 10.1021/jf901165h
    [3]
    WILKINSON D E, BAYLIS S A, PADLEY D, et al. Establishment of the 1st World Health Organization international standards for human papillomavirus type 16 DNA and type 18 DNA[J]. International Journal of Cancer, 2010, 126(12): 2969-2983.
    [4]
    DUAN Y, CHEN R, Wu X, et al. Preparation of Reference Materials Used for Detecting Nucleic Acids of Nervous Necrosis Virus[J]. China Animal Health Inspection, 2018, 35(2): 102-107.
    [5]
    李春, 刘建涛, 高运华, 等. 紫外分光光度法测定核酸含量的影响因素分析[J]. 化学试剂, 2020, 42(1): 53-57.
    [6]
    XIA C S, FEN Z Y. Application of Molecular Absorption Spectrophotometric Method to the Determination of Biologic Macromolecular Structures[J]. Spectroscopy Spectral Analysis, 2004(10): 1197-1201.
    [7]
    OKAMOTO T, OKABE S. Ultraviolet absorbance at 260 and 280 nm in RNA measurement is dependent on measurement solution[J]. International Journal of Molecular Medicine, 2000, 5(6): 657-666.
    [8]
    LI Z X, YANG R, JIN S S, et al. Factor analysis of effect on purity of RNA extracted by TRIzol[J]. Journal of Xinxiang Medical University, 2016, 33(8): 653-656, 661.
    [9]
    RENGARAJAN K, CRISTOL S M, MEHTA M, et al. Quantifying DNA concentrations using fluorometry: a comparison of fluorophores[J]. Molecular Vision, 2002(8): 416-421.
    [10]
    SINGER V L, JONES L J, YUE S T, et al. Characterization of PicoGreen Reagent and Development of a Fluorescence-Based Solution Assay for Double-Stranded DNA Quantitation[J]. Anal Biochem, 1997, 249(2): 228-238. doi: 10.1006/abio.1997.2177
    [11]
    L J J. RNA quantitation by fluorescence-based solution assay: RiboGreen reagent characterization[J]. Analytical Biochemistry, 1998, 265(2): 368-374. doi: 10.1006/abio.1998.2914
    [12]
    XIN L, XU G M, GUO J F, et al. A Method for Quantification of Double Strand DNA Using SYBR Green I Dye[J]. China Biotechnology, 2008, 28(1): 55-60.
    [13]
    HUGGETT J, BUSTIN S A. Standardisation and reporting for nucleic acid quantification[J]. Accreditation & Quality Assurance, 2011, 16(8-9): 399-405.
    [14]
    BUSTIN, S. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29(1): 23-39. doi: 10.1677/jme.0.0290023
    [15]
    JIANG L L, WANG H L, WANG X L, et al. Establishment of a national grade Ⅱ reference material for HBV DNA[J]. Laboratory Medicine, 31(8): 703-708.
    [16]
    YAO L, ZHANG Q, LI F L, et al. Construction, Purification and Quantification of Multiplex Armored RNA Containing Targets for Detection of 4 Foodborne Viruses[J]. Food Science, 2019, 40(8): 293-299.
    [17]
    Pavšič J, Žel J, Milavec M. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification[J]. Analytical and Bioanalytical Chemistry, 2016, 408(1): 107-121. doi: 10.1007/s00216-015-9107-2
    [18]
    PINHEIRO L B, COLEMEN V A, HINDSON C M, et al. Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification[J]. Analytical Chemistry, 2011, 84(2): 1003-1011.
    [19]
    ZHU Q Y, YANG W X, GAO Y B, et al. Microfluidic Digital Chip for Absolute Quantification of Nucleic Acid Amplification[J]. Chemical Journal of Chinese Universities, 2013, 34(3): 545-350.
    [20]
    BHAT S, EMSLIE K R. Digital polymerase chain reaction for characterisation of DNA reference materials[J]. Biomolecular Detection and Quantification, 2016(10): 47-49.
    [21]
    HAYNES R J, KLINE M C, TOMAN B, et al. Standard Reference Material 2366 for Measurement of Human Cytomegalovirus DNA[J]. Journal of Molecular Diagnostics, 2013, 15(2): 177-185. doi: 10.1016/j.jmoldx.2012.09.007
    [22]
    YUAN L, LI E H, DONG H, et al. Establishment of the national nucleic acid reference material of HP-PRRSV[J]. Animal Husbandry Veterinary Medicine, 2018, 39(5): 826-829.
    [23]
    NOLAN T, HANDS R E, BUSTIN S A. Quantification of mRNA using real-time RT-PCR[J]. Nat Protoc 2006, 1(3): 1559-1582.
    [24]
    YAN N C, YI Y J, JING W, et al. Effect of Reverse Transcription Process on Quantitive Detection of Porcine Reproductive and Respiratory Syndrome virus[J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(2): 80-85.
    [25]
    GRIFFITHS K R, BURKE D G, EMSLIE K R. Quantitative polymerase chain reaction: A framework for improving the quality of results and estimating uncertainty of measurement[J]. Analytical Methods, 2011, 3(10): 2201-2211. doi: 10.1039/c1ay05069a
    [26]
    HUGGETT J F, NOVAK T, GARSON J A, et al. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon[J]. BMC Research Notes, 2008, 1(1): 70-70. doi: 10.1186/1756-0500-1-70
    [27]
    INCHUL Y. A strategy for establishing accurate quantitation standards of oligonucleotides: quantitation of phosphorus of DNA phosphodiester bonds using inductively coupled plasma-optical emission spectroscopy[J]. Analytical Biochemistry, 2004, 335(1): 150-161. doi: 10.1016/j.ab.2004.08.038
    [28]
    HOLDEN M J, RABB S A, TEWARI Y B, et al. Traceable Phosphorus Measurements by ICP-OES and HPLC for the Quantitation of DNA[J]. Analytical Chemistry, 2007, 79(4): 1536-1541. doi: 10.1021/ac061463b
    [29]
    BRENNAN R G, RABB S A, HOLDEN M J, et al. Potential Primary Measurement Tool for the Quantification of DNA[J]. Analytical Chemistry, 2009, 81(9): 3414-3420. doi: 10.1021/ac802688x
    [30]
    LECLERC O, FRAISSE P O, LABARRAQUE G, et al. Method development for genomic Legionella pneumophila DNA quantification by inductively coupled plasma mass spectrometry[J]. Anal Biochem, 2013, 435(2): 153-158. doi: 10.1016/j.ab.2012.12.023
    [31]
    GAO Y H, LI H F, LI J X, et al. Quantitative Analysis of Fluorescent Dye-labeled DNA by High Resolution Inductively Coupled Plasma Mass Spectrometry[J]. Chemical Journal of Chinese Universities, 2010, 31(12): 2360-2365.
    [32]
    WEN L, YAN L I, LI X U, et al. Quantification of Plasmid DNA Reference Material for Vibrio Cholerae by Using ICP-MS and Digital PCR[J]. Chemical Reagents, 2018, 40(12): 1179-1182.
    [33]
    KUNG A W, KILBY P M, PORTWOOD D E, et al. Quantification of dsRNA using stable isotope labeling dilution liquid chromatography/mass spectrometry[J]. Rapid Commun Mass Spectrom, 2018, 32(7): 590-596. doi: 10.1002/rcm.8074
    [34]
    DONG L, ZANG C, WANG J, et al. Lambda genomic DNA quantification using ultrasonic treatment followed by liquid chromatography–isotope dilution mass spectrometry[J]. Analytical Bioanalytical Chemistry, 2012, 402(6): 2079-2088. doi: 10.1007/s00216-011-5644-5
    [35]
    O'CONNOR G, DAWSON C, WOOLFORD A, et al. Quantitation of Oligonucleotides by Phosphodiesterase Digestion Followed by Isotope Dilution Mass Spectrometry:   Proof of Concept[J]. Anal Chem, 2002, 74(15): 3670-3676. doi: 10.1021/ac0255375
    [36]
    MENG Z, LIMBACH P A. Quantitation of Ribonucleic Acids Using18O Labeling and Mass Spectrometry[J]. Analytical Chemistry, 2005, 77(6): 1891-1895. doi: 10.1021/ac048801y
    [37]
    SHIBAYAMA S, FUJII S-I, INAGAKI K, et al. Formic acid hydrolysis/liquid chromatography isotope dilution mass spectrometry: An accurate method for large DNA quantification[J]. Journal of Chromatography A, 2016, 1468: 109-115. doi: 10.1016/j.chroma.2016.09.031
    [38]
    SACHIE, SHIBAYAMA, SHIN I, et al. Development of certified reference material NMIJ CRM 6205-a for the validation of DNA quantification methods: accurate mass concentrations of 600-bp DNA solutions having artificial sequences[J]. Analytical & Bioanalytical Chemistry, 2019, 411(23): 6091-6100.
    [39]
    Frédéric R, PIROTTE S, PAUW E D, et al. Positive and negative ion mode ESI-MS and MS/MS for studying drug–DNA complexes[J]. International Journal of Mass Spectrometry, 2006, 253(3): 156-171. doi: 10.1016/j.ijms.2005.11.027
    [40]
    LI H, CHANG Y. The Principle of Flow Cytometer and Clinical Application[J]. China Medical Device, 2011, 17(5): 37-39.
    [41]
    ZHENG J, YEUNG E S. Counting Single DNA Molecules in a Capillary with Radial Focusing[J]. Australian Journal of Chemistry, 2003, 56(3): 149-153. doi: 10.1071/CH02192
    [42]
    LIM H-M, YOO H B, HONG N S, et al. Count-based quantitation of trace level macro-DNA molecules[J]. Metrologia, 2009, 46(3): 375-387. doi: 10.1088/0026-1394/46/3/028
    [43]
    YOO H B, OH D, SONG J Y, et al. A candidate reference method for quantification of low concentrations of plasmid DNA by exhaustive counting of single DNA molecules in a flow stream[J]. Metrologia, 2014, 51(5): 491-502. doi: 10.1088/0026-1394/51/5/491
    [44]
    YOO H B, LEE C, HONG K S, et al. Quantification of single-strand DNA by sequence-specific counting in capillary flow cytometry[J]. Metrologia, 2020, 57(6): 065019. doi: 10.1088/1681-7575/abb113
    [45]
    YOO H, PARK S R, DONG L, et al. International Comparison of Enumeration-Based Quantification of DNA Copy-Concentration Using Flow Cytometric Counting and Digital Polymerase Chain Reaction[J]. Anal Chem, 2016, 88(24): 12169. doi: 10.1021/acs.analchem.6b03076
    [46]
    HUSSELS M, ENGEL S, BOCK N. Investigation of direct counting and sizing of DNA fragments in flow applying an improved data analysis and correction method[J]. Biomolecular Detection and Quantification, 2019, 17: 2214-7535.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (186) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return