Volume 65 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
DUAN Junyi, ZHU Zhendong, ZHOU Yadong, LIU Xiaochi, RU Ning, QU Jifeng. Chip-Scale Laser-Cooling Atoms based on Diffractive Optical Elements[J]. Metrology Science and Technology, 2021, 65(10): 10-14, 40. doi: 10.12338/j.issn.2096-9015.2020.9025
Citation: DUAN Junyi, ZHU Zhendong, ZHOU Yadong, LIU Xiaochi, RU Ning, QU Jifeng. Chip-Scale Laser-Cooling Atoms based on Diffractive Optical Elements[J]. Metrology Science and Technology, 2021, 65(10): 10-14, 40. doi: 10.12338/j.issn.2096-9015.2020.9025

Chip-Scale Laser-Cooling Atoms based on Diffractive Optical Elements

doi: 10.12338/j.issn.2096-9015.2020.9025
  • Available Online: 2021-04-28
  • Publish Date: 2021-10-18
  • Cold-atom systems provide a nearly static measurement medium with almost no interaction between the atoms for quantum precision measurement processes, thereby avoiding the frequency shift and broadening existing in the working medium of hot atoms, making the measurement results more accurate. However, the atomic cooling part of current quantum precision measurement systems is bulky and complex, which is not conducive to miniaturization of distributable quantum measurement standard systems. In order to make a less complex magneto-optical trap system, we adopted the scheme to combine the diffraction grating chip and the atomic cooling technique. The wavefront of a single incident light was phase modulated through the linear grating, and the atoms were successfully trapped on a chip scale. The preparation of the core chip of a miniaturized magneto-optical trap and the realization of the magneto-optical trap system with a simple optical structure can lay a solid foundation for further miniaturization of the overall system of a magneto-optical trap in the future.
  • loading
  • [1]
    PHILLIPS W D, NOBEL LECTURE. Laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 1998, 70(3): 721. doi: 10.1103/RevModPhys.70.721
    HE WEI. Towards miniaturized strontium optical lattice clock[D]. Birmingham: Diss. University of Birmingham, 2017.
    Lee K I, Kim J A, Noh H R, et al. Single-beam atom trap in a pyramidal and conical hollow mirror[J]. Optics letters, 1996, 21(15): 1177-1179. doi: 10.1364/OL.21.001177
    Vangeleyn, Matthieu, Griffin, et al. Single-laser, one beam, tetrahedral magneto-optical trap[J]. Optics express, 2009, 17(16): 13601-13608. doi: 10.1364/OE.17.013601
    S Pollock, J P Cotter, A Laliotis, et al. Characteristics of integrated magneto-optical traps for atom chips[J]. New Journal of Physics, 2011, 13(4): 043029. doi: 10.1088/1367-2630/13/4/043029
    Pala R A, White J, Barnard E, et al. Design of plasmonic thin‐film solar cells with broadband absorption enhancements[J]. Advanced materials, 2009, 21(34): 3504-3509. doi: 10.1002/adma.200900331
    HEYDARI MEHDI, MOHAMMAD SABAEIAN. Plasmonic nanogratings on MIM and SOI thin-film solar cells: comparison and optimization of optical and electric enhancements[J]. Applied optics, 2017, 56(7): 1917-1924. doi: 10.1364/AO.56.001917
    Mcgilligan J P, Griffin P F, Elvin R, et al. Grating chips for quantum technologies[J]. Scientific reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x
    C C Nshii, M Vangeleyn, J P Cotter, et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies[J]. Nature nanotechnology, 2013, 8(5): 321. doi: 10.1038/nnano.2013.47
    Riis E, Hoth G W, R Elvin, et al. Towards a compact atomic clock based on coherent population trapping and the grating magneto-optical trap[C]. Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology, 2019.
    Elvin R, Hoth G W, Wright M, et al. Cold-atom clock based on a diffractive optic[J]. Optics Express, 2019, 27(26): 38359-38366. doi: 10.1364/OE.378632
    Imhof E, Stuhl B K, Kasch B, et al. Two-dimensional grating magneto-optical trap[J]. Physical Review A, 2017, 96(3): 033636. doi: 10.1103/PhysRevA.96.033636
    Barker D S, Norrgard E B, Klimov N N, et al. Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating[J]. Physical Review Applied, 2019, 11(6): 064023. doi: 10.1103/PhysRevApplied.11.064023
    Hui Zhang, Tao Li, Ya Ling, et al. Microtrap on a concave grating reflector for atom trapping[J]. Chinese Physics B, 2016, 25(8): 087802. doi: 10.1088/1674-1056/25/8/087802
    Ke C, Rui W, Zheng H, et al. Enhanced light trapping in thin-film silicon solar cells with concave quadratic bottom gratings[J]. Applied optics, 2018, 57(19): 5348-5355. doi: 10.1364/AO.57.005348
    Chauhan N, Bose D, Puckett M, et al. Photonic Integrated Si3N4 Ultra-Large-Area Grating Waveguide MOT Interface for 3D Atomic Clock Laser Cooling[C]. 2019 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2019.
    Cotter J P, Mcgilligan J P, Griffin P F, et al. Design and fabrication of diffractive atom chips for laser cooling and trapping[J]. Applied Physics B, 2016, 122(6): 172. doi: 10.1007/s00340-016-6415-y
    VANIER J. Atomic clocks based on coherent population trapping: a review[J]. Applied Physics B, 2005, 81(4): 421-442. doi: 10.1007/s00340-005-1905-3
    Xiaochi Liu, Eugene Ivanov, Valeriy I. Yudin, et al. Low-drift coherent population trapping clock based on laser-cooled atoms and high-coherence excitation fields[J]. Physical Review Applied, 2017, 8(5): 054001. doi: 10.1103/PhysRevApplied.8.054001
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (335) PDF downloads(80) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint