Citation: | PENG Tao, JIAO Xueshima, ZHENG Pimiao, LIANG Zhanwei, XIONG Jincheng, DAI Xinhua. Novel Nanomaterials-Based Fluorescent Assay for Rapid Detection of Glutathione[J]. Metrology Science and Technology, 2021, 65(5): 40-45. doi: 10.12338/j.issn.2096-9015.2020.9026 |
[1] |
Kleinman W A, Richie J P. Status of glutathione and other thiols and disulfides in human plasma[J]. Biochemical pharmacology, 2000, 60(1): 19-29. doi: 10.1016/S0006-2952(00)00293-8
|
[2] |
Areias M C C, Shimizu K, Compton R G. Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach[J]. Analyst, 2016, 141(10): 2904-2910. doi: 10.1039/C6AN00550K
|
[3] |
Erat M, Şakİroğlu H İ, Çİftçİ M. Effects of some antibiotics on glutathione reductase activities from human erythrocytes in vitro and from rat erythrocytes in vivo[J]. Journal of enzyme inhibition and medicinal chemistry, 2005, 20(1): 69-74. doi: 10.1080/14756360400009309
|
[4] |
Perricone C, De Carolis C, Perricone R. Glutathione: a key player in autoimmunity[J]. Autoimmunity reviews, 2009, 8(8): 697-701. doi: 10.1016/j.autrev.2009.02.020
|
[5] |
Ge J, Cai R, Chen X, et al. Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione[J]. Talanta, 2019(195): 40-45.
|
[6] |
Li Z M, Pi T, Sheng Y P, et al. Fluorescence detection of glutathione using N-doped graphene quantum dots–MnO2 nanoarchitecture[J]. Journal of Applied Spectroscopy, 2020, 87(5): 930-937. doi: 10.1007/s10812-020-01091-2
|
[7] |
Bu Y, Zhu G, Li S, et al. Silver-nanoparticle-embedded porous silicon disks enabled SERS signal amplification for selective glutathione detection[J]. ACS Applied Nano Materials, 2018, 1(1): 410-417. doi: 10.1021/acsanm.7b00290
|
[8] |
Rawat B, Mishra K K, Barman U, et al. Two-dimensional MoS2-based electrochemical biosensor for highly selective detection of glutathione[J]. IEEE Sensors Journal, 2020, 20(13): 6937-6944. doi: 10.1109/JSEN.2020.2978275
|
[9] |
Ma L, Shi H, Lian K, et al. Highly selective and sensitive determination of several antioxidants in human breast milk using high-performance liquid chromatography based on Ag(III) complex chemiluminescence detection[J]. Food Chemistry, 2017(218): 422-426.
|
[10] |
Lee S, Li J, Zhou X, et al. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes[J]. Coordination Chemistry Reviews, 2018(366): 29-68.
|
[11] |
Shi Y, Zhang H, Yue Z, et al. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection[J]. Nanotechnology, 2013, 24(37): 375501. doi: 10.1088/0957-4484/24/37/375501
|
[12] |
Dong Z Z, Lu L, Ko C N, et al. A MnO2 nanosheet-assisted GSH detection platform using an iridium (iii) complex as a switch-on luminescent probe[J]. Nanoscale, 2017, 9(14): 4677-4682. doi: 10.1039/C6NR08357A
|
[13] |
Shi Y, Pan Y, Zhang H, et al. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma[J]. Biosensors and Bioelectronics, 2014(56): 39-45.
|
[14] |
Zhang X, Wu F G, Liu P, et al. Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: glutathione detection and selective cancer cell imaging[J]. Small, 2014, 10(24): 5170-5177.
|
[15] |
Yao C, Wang J, Zheng A, et al. A fluorescence sensing platform with the MnO2 nanosheets as an effective oxidant for glutathione detection[J]. Sensors and Actuators B: Chemical, 2017(252): 30-36.
|
[16] |
He Y, Zhang X. Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles[J]. Sensors and Actuators B: Chemical, 2016(222): 320-324.
|
[17] |
Deng R, Xie X, Vendrell M, et al. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles[J]. Journal of the American Chemical Society, 2011, 133(50): 20168-20171. doi: 10.1021/ja2100774
|
[18] |
Deng H H, Shi X Q, Wang F F, et al. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host–guest recognition[J]. Chem. Mater., 2017, 29(3): 1362-1369. doi: 10.1021/acs.chemmater.6b05141
|
[19] |
Jiao L, Zhang L, Du W, et al. Hierarchical manganese dioxide nanoflowers enable accurate ratiometric fluorescence enzyme-linked immunosorbent assay[J]. Nanoscale, 2018, 10(46): 21893-21897. doi: 10.1039/C8NR07096B
|
[20] |
Fan D, Shang C, Gu W, et al. Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 25870-25877.
|
[21] |
刘密凤, 刘蔚, 郭海, 等. 临床生物化学指标测量不确定度的评估[J]. 检验医学与临床, 2013, 10(23): 3153-3154.
|