Citation: | TIAN Tian, LIU Shuyu, ZHANG Yan, ZHOU Xia, JIAO Hui, LI Xiuqin. Mass Spectrometry Matrix Effect Study for the Trace Analysis of Chloramphenicol Residues in Honey[J]. Metrology Science and Technology, 2021, 65(5): 77-82, 100. doi: 10.12338/j.issn.2096-9015.2020.9037 |
[1] |
Veach B, Mudalige T, Barens P, et al. Quantitative Screening Method for Erythromycin and Tylosin in Honey Using RapidFire Mass Spectrometry[J]. Journal of AOAC International, 2018, 101(3): 897-903. doi: 10.5740/jaoacint.17-0262
|
[2] |
European Legislation Regarding Antibiotics in Honey: An Overview[EB/OL]. [2021-03-18]. http://europroxima.com.
|
[3] |
QIN X F, WANG Q Q, GENG L P, et al. A “Signal-On” Photoelectrochemical Aptasensor Based on Graphene Quantum Dots-Sensitized TiO2 Nanotube Arrays for Sensitive Detection of Chloramphenicol[J]. Talanta, 2019, 197(1): 28-35.
|
[4] |
农业部峰产品质量监督检验测试中心. 绿色食品蜂产品: NY/T752-2012[S]. 北京. 中国标准出版社, 2012: 12.
|
[5] |
Barreto F, Ribeiro C, Barcellos Hoff R, et al. Determination of Chloramphenicol, Thiamphenicol, Florfenicol and Florfenicol Amine in Poultry, Swine, Bovine and Fish by Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Chromatography A, 2016, 1449: 48-53. doi: 10.1016/j.chroma.2016.04.024
|
[6] |
Jakšić S, Ratajac R, Prica N, et al. Methods of Determination of Antibiotic Residues in Honey[J]. Journal of Analytical Chemistry, 2018, 73(4): 317-324. doi: 10.1134/S1061934818040044
|
[7] |
Matuszewsk B, Constanzer M, Chavez-Eng C. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS[J]. Analytical Chemistry, 2013, 75(13): 3019-3030.
|
[8] |
Gómez-Pérez M, Plaza-Bolaños P, Romero-González R, et al. Comprehensive Qualitative and Quantitative Determination of Pesticides and Veterinary Drugs in Honey Using Liquid Chromatography-Orbitrap High Resolution Mass Spectrometry[J]. Journal of Chromatography A, 2012, 1248: 130-138. doi: 10.1016/j.chroma.2012.05.088
|
[9] |
YAN C, ZHANG J, YAO L, et al. Aptamer-Mediated Colorimetric Method for Rapid and Sensitive Detection of Chloramphenicol in Food[J]. Food Chemistry, 2018, 260: 208-212. doi: 10.1016/j.foodchem.2018.04.014
|
[10] |
LI Y G, LIU X H, ZHANG R, et al. Analysis of Chloramphenicol in Drinking Water Using an Evaporation Preparative Step and Isotope Dilution Liquid Ehromatography-Tandem Mass Spectrometry[J]. Acta Chromatographica, 2018, 30(1): 17-20. doi: 10.1556/1326.2017.28404
|
[11] |
Galarini R, Saluti G, Giusepponi D, et al. Multiclass determination of 27 Antibiotics in Honey[J]. Food Control, 2015, 48: 12-24. doi: 10.1016/j.foodcont.2014.03.048
|
[12] |
LI Z W, LEI C, WANG N, et al. Preparation of Magnetic Molecularly Imprinted Polymers with Double Functional Monomers for the Extraction and Detection of Chloramphenicol in Food[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1100-1101(9): 113-121.
|
[13] |
Armenta S, de la Guardia M, Abad-Fuentes A, et al. Highly Selective Solid-Phase Extraction Sorbents for Chloramphenicol Determination in Food and Urine by Ion Mobility Spectrometry[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29): 8559-8567. doi: 10.1007/s00216-016-9995-9
|
[14] |
Sniegocki T, Posyniak A, Gbylik-Sikorska M, et al. Determination of Chloramphenicol in Milk Using a QuEChERS-Based on Liquid Chromatography Tandem Mass Spectrometry Method[J]. Analytical Letters, 2014, 474(4): 568-578.
|
[15] |
Rezaee M, Khalilian F. Application of Ultrasound-Assisted Extraction Followed by Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction for the Determination of Chloramphenicol in Chicken Meat[J]. Food Analytical Methods, 2018, 11(3): 759-767. doi: 10.1007/s12161-017-1048-2
|
[16] |
Baeza Fonte A, Rodríguez Castro G, Liva-Garrido M. Multi-Residue Analysis of Sulfonamide Antibiotics in Honey Samples by On-line Solid Phase Extraction Using Molecularly Imprinted Polymers Coupled to Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Liquid Chromatography and Related Technologies, 2018, 41(15-16): 881-891. doi: 10.1080/10826076.2018.1533477
|
[17] |
Kawano S, HAO HongYuan, Hashi Y, et al. Analysis of Chloramphenicol in Honey by On-line Pretreatment Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Chemical Letters, 2015, 26(1): 36-38. doi: 10.1016/j.cclet.2014.10.026
|
[18] |
Shao B, Jia X, Zhang J, et al. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry[J]. Food Chem, 2009, 114(11): 15-21.
|
[19] |
Berg T, Karlsen M, Øiestad Å M L, et al. Evaluation of 13C- and 2H-labeled internal standards for the determination of amphetamines in biological samples, by reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1344: 83-90. doi: 10.1016/j.chroma.2014.04.020
|
[20] |
Berg T, Strand D H. 13C labelled internal standards-A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples[J]. Journal of Chromatography A, 2011, 1218(52): 9366-9374. doi: 10.1016/j.chroma.2011.10.081
|
[21] |
Cappiello A, Famiglini G, Palma P, et al. Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry[J]. Analytical Chemistry, 2008, 80(23): 9343-9348. doi: 10.1021/ac8018312
|
[22] |
Bienvenu J, Provencher G, Bélanger P, et al. Standardized Procedure for the Simultaneous Determination of the Matrix Effect, Recovery, Process Efficiency, and Internal Standard Association[J]. Analytical Chemistry, 2017, 89(14): 7560-7568. doi: 10.1021/acs.analchem.7b01383
|
[23] |
LI X Q, LI H M, XU S, et al. Rapid Quantification of Trace Chloramphenicol in Honey Under Ambient Conditions Using Direct Analysis Via Real-Time QTRAP Mass Spectrometry[J]. Food Chemistry, 2019, 276: 50-56. doi: 10.1016/j.foodchem.2018.09.130
|
[24] |
LI X Q, YANG Z, ZHANG Q H, et al. Evaluation of Matrix Effect in Isotope Dilution Mass Spectrometry Dased on Quantitative Analysis of Chloramphenicol Residues in Milk Powder[J]. Analytica Chimica Acta, 2014, 807: 75-83. doi: 10.1016/j.aca.2013.11.017
|
[25] |
Sargent M, Harte R, Harrington C. Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry (IDMS)[M]. Laboratory of the Government Chemist by The Royal Society of Chemistry, 2002.
|
[26] |
Mottier P, Parisod V, Gremaud E, et al. Determination of the Antibiotic Chloramphenicol in Meat and Seafood Products by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry[J]. Journal of Chromatography A, 2003, 994(1-2): 75-84. doi: 10.1016/S0021-9673(03)00484-9
|
[27] |
Lopez M, Pettis J, Smith I, et al. Multiclass Determination and Confirmation of Antibiotic Residues in Honey Using LC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1553-1559. doi: 10.1021/jf073236w
|
[28] |
Pagliano E, Meija J. Reducing the Matrix Effects in Chemical Analysis: Fusion of Isotope Dilution and Standard Addition Methods[J]. Metrologia, 2016, 53(2): 829-834. doi: 10.1088/0026-1394/53/2/829
|