Volume 65 Issue 5
Jun.  2021
Turn off MathJax
Article Contents
TIAN Tian, LIU Shuyu, ZHANG Yan, ZHOU Xia, JIAO Hui, LI Xiuqin. Mass Spectrometry Matrix Effect Study for the Trace Analysis of Chloramphenicol Residues in Honey[J]. Metrology Science and Technology, 2021, 65(5): 77-82, 100. doi: 10.12338/j.issn.2096-9015.2020.9037
Citation: TIAN Tian, LIU Shuyu, ZHANG Yan, ZHOU Xia, JIAO Hui, LI Xiuqin. Mass Spectrometry Matrix Effect Study for the Trace Analysis of Chloramphenicol Residues in Honey[J]. Metrology Science and Technology, 2021, 65(5): 77-82, 100. doi: 10.12338/j.issn.2096-9015.2020.9037

Mass Spectrometry Matrix Effect Study for the Trace Analysis of Chloramphenicol Residues in Honey

doi: 10.12338/j.issn.2096-9015.2020.9037
  • Available Online: 2021-05-08
  • Publish Date: 2021-06-24
  • Organic isotope dilution mass spectrometry (IDMS) is a potential reference method for the accurate measurement of trace components in complex matrix samples. However, the analytical conditions, isotope dilution reagents, matrix effects (MEs), and other factors can also affect the results. In this paper, jujube and wattle honey were used as the study samples to compare the MEs in the trace measurement of chloramphenicol residues in honey under different extraction methods, so as to investigate the influence of MEs on the results, the compensation and elimination methods of MEs.
  • loading
  • [1]
    Veach B, Mudalige T, Barens P, et al. Quantitative Screening Method for Erythromycin and Tylosin in Honey Using RapidFire Mass Spectrometry[J]. Journal of AOAC International, 2018, 101(3): 897-903. doi: 10.5740/jaoacint.17-0262
    [2]
    European Legislation Regarding Antibiotics in Honey: An Overview[EB/OL]. [2021-03-18]. http://europroxima.com.
    [3]
    QIN X F, WANG Q Q, GENG L P, et al. A “Signal-On” Photoelectrochemical Aptasensor Based on Graphene Quantum Dots-Sensitized TiO2 Nanotube Arrays for Sensitive Detection of Chloramphenicol[J]. Talanta, 2019, 197(1): 28-35.
    [4]
    农业部峰产品质量监督检验测试中心. 绿色食品蜂产品: NY/T752-2012[S]. 北京. 中国标准出版社, 2012: 12.
    [5]
    Barreto F, Ribeiro C, Barcellos Hoff R, et al. Determination of Chloramphenicol, Thiamphenicol, Florfenicol and Florfenicol Amine in Poultry, Swine, Bovine and Fish by Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Chromatography A, 2016, 1449: 48-53. doi: 10.1016/j.chroma.2016.04.024
    [6]
    Jakšić S, Ratajac R, Prica N, et al. Methods of Determination of Antibiotic Residues in Honey[J]. Journal of Analytical Chemistry, 2018, 73(4): 317-324. doi: 10.1134/S1061934818040044
    [7]
    Matuszewsk B, Constanzer M, Chavez-Eng C. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS[J]. Analytical Chemistry, 2013, 75(13): 3019-3030.
    [8]
    Gómez-Pérez M, Plaza-Bolaños P, Romero-González R, et al. Comprehensive Qualitative and Quantitative Determination of Pesticides and Veterinary Drugs in Honey Using Liquid Chromatography-Orbitrap High Resolution Mass Spectrometry[J]. Journal of Chromatography A, 2012, 1248: 130-138. doi: 10.1016/j.chroma.2012.05.088
    [9]
    YAN C, ZHANG J, YAO L, et al. Aptamer-Mediated Colorimetric Method for Rapid and Sensitive Detection of Chloramphenicol in Food[J]. Food Chemistry, 2018, 260: 208-212. doi: 10.1016/j.foodchem.2018.04.014
    [10]
    LI Y G, LIU X H, ZHANG R, et al. Analysis of Chloramphenicol in Drinking Water Using an Evaporation Preparative Step and Isotope Dilution Liquid Ehromatography-Tandem Mass Spectrometry[J]. Acta Chromatographica, 2018, 30(1): 17-20. doi: 10.1556/1326.2017.28404
    [11]
    Galarini R, Saluti G, Giusepponi D, et al. Multiclass determination of 27 Antibiotics in Honey[J]. Food Control, 2015, 48: 12-24. doi: 10.1016/j.foodcont.2014.03.048
    [12]
    LI Z W, LEI C, WANG N, et al. Preparation of Magnetic Molecularly Imprinted Polymers with Double Functional Monomers for the Extraction and Detection of Chloramphenicol in Food[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1100-1101(9): 113-121.
    [13]
    Armenta S, de la Guardia M, Abad-Fuentes A, et al. Highly Selective Solid-Phase Extraction Sorbents for Chloramphenicol Determination in Food and Urine by Ion Mobility Spectrometry[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29): 8559-8567. doi: 10.1007/s00216-016-9995-9
    [14]
    Sniegocki T, Posyniak A, Gbylik-Sikorska M, et al. Determination of Chloramphenicol in Milk Using a QuEChERS-Based on Liquid Chromatography Tandem Mass Spectrometry Method[J]. Analytical Letters, 2014, 474(4): 568-578.
    [15]
    Rezaee M, Khalilian F. Application of Ultrasound-Assisted Extraction Followed by Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction for the Determination of Chloramphenicol in Chicken Meat[J]. Food Analytical Methods, 2018, 11(3): 759-767. doi: 10.1007/s12161-017-1048-2
    [16]
    Baeza Fonte A, Rodríguez Castro G, Liva-Garrido M. Multi-Residue Analysis of Sulfonamide Antibiotics in Honey Samples by On-line Solid Phase Extraction Using Molecularly Imprinted Polymers Coupled to Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Liquid Chromatography and Related Technologies, 2018, 41(15-16): 881-891. doi: 10.1080/10826076.2018.1533477
    [17]
    Kawano S, HAO HongYuan, Hashi Y, et al. Analysis of Chloramphenicol in Honey by On-line Pretreatment Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Chemical Letters, 2015, 26(1): 36-38. doi: 10.1016/j.cclet.2014.10.026
    [18]
    Shao B, Jia X, Zhang J, et al. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry[J]. Food Chem, 2009, 114(11): 15-21.
    [19]
    Berg T, Karlsen M, Øiestad Å M L, et al. Evaluation of 13C- and 2H-labeled internal standards for the determination of amphetamines in biological samples, by reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1344: 83-90. doi: 10.1016/j.chroma.2014.04.020
    [20]
    Berg T, Strand D H. 13C labelled internal standards-A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples[J]. Journal of Chromatography A, 2011, 1218(52): 9366-9374. doi: 10.1016/j.chroma.2011.10.081
    [21]
    Cappiello A, Famiglini G, Palma P, et al. Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry[J]. Analytical Chemistry, 2008, 80(23): 9343-9348. doi: 10.1021/ac8018312
    [22]
    Bienvenu J, Provencher G, Bélanger P, et al. Standardized Procedure for the Simultaneous Determination of the Matrix Effect, Recovery, Process Efficiency, and Internal Standard Association[J]. Analytical Chemistry, 2017, 89(14): 7560-7568. doi: 10.1021/acs.analchem.7b01383
    [23]
    LI X Q, LI H M, XU S, et al. Rapid Quantification of Trace Chloramphenicol in Honey Under Ambient Conditions Using Direct Analysis Via Real-Time QTRAP Mass Spectrometry[J]. Food Chemistry, 2019, 276: 50-56. doi: 10.1016/j.foodchem.2018.09.130
    [24]
    LI X Q, YANG Z, ZHANG Q H, et al. Evaluation of Matrix Effect in Isotope Dilution Mass Spectrometry Dased on Quantitative Analysis of Chloramphenicol Residues in Milk Powder[J]. Analytica Chimica Acta, 2014, 807: 75-83. doi: 10.1016/j.aca.2013.11.017
    [25]
    Sargent M, Harte R, Harrington C. Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry (IDMS)[M]. Laboratory of the Government Chemist by The Royal Society of Chemistry, 2002.
    [26]
    Mottier P, Parisod V, Gremaud E, et al. Determination of the Antibiotic Chloramphenicol in Meat and Seafood Products by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry[J]. Journal of Chromatography A, 2003, 994(1-2): 75-84. doi: 10.1016/S0021-9673(03)00484-9
    [27]
    Lopez M, Pettis J, Smith I, et al. Multiclass Determination and Confirmation of Antibiotic Residues in Honey Using LC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1553-1559. doi: 10.1021/jf073236w
    [28]
    Pagliano E, Meija J. Reducing the Matrix Effects in Chemical Analysis: Fusion of Isotope Dilution and Standard Addition Methods[J]. Metrologia, 2016, 53(2): 829-834. doi: 10.1088/0026-1394/53/2/829
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (202) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return