WEI Hengzheng, WANG Weinong, PEI Limei, GUO Siyi, CUI Jianqiu, ZHENG Qingguo, GAO Tongling. Measurement Uncertainty Evaluation Method for Task-Oriented Coordinate Measuring Machines[J]. Metrology Science and Technology, 2021, 65(5): 115-119, 54. DOI: 10.12338/j.issn.2096-9015.2020.9053
Citation: WEI Hengzheng, WANG Weinong, PEI Limei, GUO Siyi, CUI Jianqiu, ZHENG Qingguo, GAO Tongling. Measurement Uncertainty Evaluation Method for Task-Oriented Coordinate Measuring Machines[J]. Metrology Science and Technology, 2021, 65(5): 115-119, 54. DOI: 10.12338/j.issn.2096-9015.2020.9053

Measurement Uncertainty Evaluation Method for Task-Oriented Coordinate Measuring Machines

More Information
  • Available Online: May 06, 2021
  • To solve the problem of analyzing and synthesizing multiple uncertainty sources of coordinate measuring machines (CMMs), the 21-item geometric motion error separation method of CMMs based on spherical column and Monte Carlo simulation algorithm is used to realize the task-oriented measurement uncertainty evaluation of CMMs, and the traceability service system of CMMs based on “Internet+” is established. The provincial and municipal metrology institutes act as traceability network nodes to assist in data collection, including error parameters, environmental parameters, and instrument parameters. When the user needs to perform task-specific measurements, the measurement strategy is sent to the National Institute of Metrology and the results are fed back to the user via the network. This traceability network reduces the length of the traceability chain to a certain extent and realizes the flattening of measurement.
  • [1]
    张国雄. 三坐标测量机[M]. 天津: 天津大学出版社, 1999: 315-316.
    [2]
    ISO/TC 213. Geometrical Product Specifications (GPS)-Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement -Part 3: Use of calibrated workpieces or standards: ISO/TS. 15530-3: 2011[S]. 2011.
    [3]
    ISO/TC 213. Geometrical Product Specifications (GPS)-Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement — Part 4: Evaluating task-specific measurement uncertainty using simulation: ISO /TS 15530-4: 2008[S]. 2008.
    [4]
    国家市场监督管理总局. 产品几何技术规范(GPS)坐标测量机(CMM)确定测量不确定度的技术 第4部分: 应用仿真技术评估特定任务的测量不确定度: GB/T 24635.4-2020[S]. 北京: 中国标准出版社, 2020.
    [5]
    国家质量监督检验检疫总局. 《测量不确定度评定与表示: JJF 1059.1-2012. 北京: 中国质检出版社, 2013.
    [6]
    Trapet, E., Wäldele, F. The Virtual CMM Concept. Advanced Mathematical Tools in Metrology. World Scientific Publ. Comp., 1996: 238-247.
    [7]
    JCGM 101: 2008.Evaluation of measurement data -Supplement 1 to the “Guide to the expression of uncertainty in measurement” Propagation of distributions using a Monte Carlo method.
    [8]
    位恒政, 王为农, 裴丽梅, 等. 基于步距规的坐标测量机的误差补偿方法[J]. 仪器仪表学报, 2010, 31(10): 2375-2380.
    [9]
    Schwenke H, Knapp W, Haitjema H. Geometric error measurement and compensation of machines - An update[J]. Annals of the CIRP, 2008, 57(2): 660-675. DOI: 10.1016/j.cirp.2008.09.008
    [10]
    Zhang G, Zang Y. A Method for Machine Calibration Using 1D Ball Array[J]. Annals of the CIRP, 1991, 40: 519-522. DOI: 10.1016/S0007-8506(07)62044-7
    [11]
    Thedore H. Hopp, Mark S. Levenson. Performance Measures for Geometric Fitting in the NIST Algorithm Testing and Evalution Program for Coordinate Measurement Systems[J]. Journal of Research of the National Institute of Standards and Technology, 1995, 100(5): 563-574. DOI: 10.6028/jres.100.042
    [12]
    [13]
    Xuewei CUI, Hengzheng WEI, Weinong WANG. Research and Evaluation of Geometric Element Data Fitting Software for Coordinate Measurement Machine[C]. ISPEMI2018, 2019, 11053: 1-10.
  • Related Articles

    [1]LI Xiang. Evaluation of Resistance Measurement Uncertainty for pH Meter Verification Instruments Using the Monte Carlo Method[J]. Metrology Science and Technology, 2024, 68(12): 69-76. DOI: 10.12338/j.issn.2096-9015.2024.0197
    [2]WANG Bowen, YANG Yuanchao, YANG Ying, MA Kun, YUE Jin. Uncertainty Evaluation of Piston Gauge Effective Area Using the Monte Carlo Method[J]. Metrology Science and Technology, 2024, 68(7): 63-71, 9. DOI: 10.12338/j.issn.2096-9015.2024.0013
    [3]WU Yanchen, SHANG Xueshen, LI Xiaomeng, ZHANG Yu, FAN Wen. Analysis of Research Hotspots in International Advanced Metrology Institutions in 2023 Based on Bibliometrics[J]. Metrology Science and Technology, 2024, 68(6): 55-63. DOI: 10.12338/j.issn.2096-9015.2024.0131
    [4]TAO Meng, REN Siyuan, LAO Changjuan. Overview and Comparison of Common Measurement Uncertainty Evaluation Methods[J]. Metrology Science and Technology, 2024, 68(6): 40-48. DOI: 10.12338/j.issn.2096-9015.2023.0263
    [5]WEI Hengzheng, WANG Weinong, PEI Limei, GUO Siyi, CUI Jianqiu, XIANG Sisi. Calibration and Applications of Multi-Sensor Coordinate Measuring Machines[J]. Metrology Science and Technology, 2024, 68(2): 46-51. DOI: 10.12338/j.issn.2096-9015.2023.0289
    [6]XU Jun, HAO Wei, WANG Jiawei, ZHANG Zhicheng, DU Yusheng. Comparative Analysis of Energy Spectrum Simulation for Medical Diagnostic X-Rays[J]. Metrology Science and Technology. DOI: 10.12338/j.issn.2096-9015.2024.0206
    [7]LIU Si, PENG Zijuan, WAN Kangni, LI Penghui, SONG Shanjun. Measurement of Organic Impurities in Tetrabromobisphenol A and Evaluation of Measurement Uncertainty[J]. Metrology Science and Technology, 2023, 67(6): 54-62. DOI: 10.12338/j.issn.2096-9015.2023.0087
    [8]HUANG Lei, DOU Yanhong, FAN Yu, HE Zhichao, ZHANG Shuang, ZHANG Liqiu, ZHANG Bo. Development of a Robot Position and Attitude Measuring System Based on a Laser Tracker and an Articulated Arm Coordinate Machine[J]. Metrology Science and Technology, 2022, 66(1): 26-31. DOI: 10.12338/j.issn.2096-9015.2021.0005
    [9]XU Tianqi, DU Lei, BAI Jie, SUN Qiao. Uncertainty Evaluation Comparison of Speed Measurements Between 24 GHz and 77 GHz Millimeter-Wave Radar Sensors[J]. Metrology Science and Technology, 2021, 65(9): 3-7, 65. DOI: 10.12338/j.issn.2096-9015.2020.9032
    [10]JIN Haoyuan, LIU Jun. The Evaluation Method and Application Research of Measurement Uncertainty[J]. Metrology Science and Technology, 2021, 65(5): 124-131. DOI: 10.12338/j.issn.2096-9015.2020.9002
  • Cited by

    Periodical cited type(6)

    1. 倪赫,孙厚军,朱凯强,董贤平,高守锋,安东阳. 超精密回转运动误差测量方法与技术. 计量科学与技术. 2024(02): 16-29 . 本站查看
    2. 位恒政,王为农,裴丽梅,郭斯宜,崔剑秋,向思思. 多传感器坐标测量机的校准及应用. 计量科学与技术. 2024(02): 46-51 . 本站查看
    3. 王博文,杨远超,杨莹,马坤,悦进. 基于蒙特卡洛法的活塞有效面积不确定度评定. 计量科学与技术. 2024(07): 63-71+9 . 本站查看
    4. 姚顺春,支嘉琦,付金杯,李峥辉,卢志民,卓俊玲. 火电企业碳排放在线监测技术研究进展. 华南理工大学学报(自然科学版). 2023(06): 97-108 .
    5. 位恒政,裴丽梅,崔剑秋,郭斯宜,向思思. 轮廓扫描法与双球法测量螺纹中径的差异分析. 计量科学与技术. 2023(06): 49-53 . 本站查看
    6. 王为农. GB/T 18779系列标准解读(二) 产品几何测量、测量设备校准和产品验证中的测量不确定度评估指南. 中国计量. 2023(10): 53-57 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (852) PDF downloads (101) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return