Citation: | XU Tao, ZHAO Yaru. An Electrical-Substitution Based Measurement Device for Nonlinearity of Laser Power Meters[J]. Metrology Science and Technology, 2021, 65(11): 29-34. doi: 10.12338/j.issn.2096-9015.2021.0169 |
[1] |
Li X Y, Scott T, Shao Y, et al. Nonlinearity measurements of high-power laser detectors at NIST[J]. J Res Nat Inst Stand Technol, 2004, 109(4): 429-434. doi: 10.6028/jres.109.030
|
[2] |
Keenan D A, Laabs H, Dowell M L, et al. Measurements of detector nonlinearity at 193 nm[J]. Applied Optics, 2005, 44(6): 841-8. doi: 10.1364/AO.44.000841
|
[3] |
马丽芹, 陆启生, 程湘爱, 等. 激光辐照光电探测器的非线性效应[J]. 青岛科技大学学报(自然科学版), 2003, 24(1): 87-90.
|
[4] |
姚和军, 吕正, 林延东. 光学探测器非线性度测试仪的研制[J]. 现代测量与实验室管理, 2001, 9(2): 31-35. doi: 10.3969/j.issn.1673-8764.2001.02.007
|
[5] |
陈风, 李双, 王骥, 等. 高精度光电探测器的线性测量[J]. 光学学报, 2008, 28(5): 889-889. doi: 10.3321/j.issn:0253-2239.2008.05.014
|
[6] |
孙权社, 陈坤峰, 李艳辉. 叠加法测量紫外探测器非线性的技术研究[J]. 光学学报, 2009(7): 1881-1884.
|
[7] |
Vayshenker I, Yang S, Swafford R. Nonlinearity of high-power optical fiber power meters at 1480 nm[J]. Applied Optics, 2006, 45(6): 1098. doi: 10.1364/AO.45.001098
|
[8] |
Li X Y, Scott T, Cromer C, et al. Reflective Optical Chopper Used in NIST High-Power Laser Measurements[J]. J Res Natl Inst Stand Technol, 2008, 113(6): 305-309. doi: 10.6028/jres.113.024
|
[9] |
Spidell M, Hadler J, Stephens M, et al. Geometric contributions to chopper wheel optical attenuation uncertainty[J]. Metrologia, 2017, 54(4): L19-L25. doi: 10.1088/1681-7575/aa75d2
|
[10] |
Stephens M, Yung C S, Tomlin N A, et al. Room temperature laser power standard using a microfabricated electrical substitution bolometer[J]. Rev Sci Instrum, 2021, 92(2): 025107, 1-13.
|
[11] |
Kuck S, Brandt F, Kremling H A, et al. Absolute measurement of F2-laser power at 157 nm[J]. Applied Optics, 2006, 45(14): 3325-3330. doi: 10.1364/AO.45.003325
|
[12] |
徐涛, 于靖, 邓玉强, 等. 准分子激光功率标准探测器的研制[J]. 应用光学, 2006, 33(4): 999-1002.
|
[13] |
Endo M, Inoue T. A double calorimeter for 10-W level Laser power measurements[J]. IEEE Transactions on Instrumentation & Measurement, 2005, 54(2): 688-691.
|
[14] |
Dowell M L, Cromer C L, Jones R D, et al. New developments in deep ultraviolet laser metrology for photolithography[C]. David G S. AIP Conference Proceedings 550. Gaithersburg: American Institute of Physics, 2001: 361-363.
|
[15] |
李英娜, 于靖. 激光中功率基准装置的改造[J]. 现代测量与实验室管理, 2000, 8(2): 15-19.
|
[16] |
于靖. 瓦级激光功率基准器的研究[J]. 现代计量测试, 1998(1): 38-42.
|
[17] |
于靖, 李英娜. 电校准激光中功率计的设计和量值稳定性考察[J]. 现代计量测试, 1996(5): 36-39.
|
[18] |
Boyer A, Cisse E, Azzouz Y. Medium-power thermopiles using thin-film technology[J]. Sensors and Actuators A, 1990, 24(3): 217-220. doi: 10.1016/0924-4247(90)80061-9
|
[19] |
Charles E, Groubert E, Boyer A. Thin-film thermopiles for measuring high laser powers[J]. Sensors and Actuators, 1988, 13(2): 131-137. doi: 10.1016/0250-6874(88)80035-0
|
[20] |
林文青. 采用薄膜热电堆的激光能量计[J]. 应用激光, 1988, 8(2): 21-24.
|
[21] |
唐黎明. 浅谈陶瓷电加热元件及其控制电路[J]. 电子制作, 2007(12): 68-69.
|
[22] |
谷云峰, 高红梅. 厚膜型MCH电加热元件制造工艺研究[J]. 山西电子技术, 2017(3): 68-69.
|
[23] |
罗慧, 李世鸿, 刘寄松, 等. 钌系厚膜电阻重烧变化特性的研究[J]. 贵金属, 2013, 34(1): 33-37. doi: 10.3969/j.issn.1004-0676.2013.01.008
|
[24] |
丁鹏, 马以武. 钌基厚膜电阻导电机理的国内外研究状况[J]. 电子器件, 2003(3): 264-268. doi: 10.3969/j.issn.1005-9490.2003.03.008
|
[25] |
何健锋. 钌系玻璃釉电位器电阻浆料设计原理及研制[J]. 混合微电子技术, 2004, 15(3): 19-27.
|
[26] |
Xu T, Gan H, Yu J, et al. Temporal response of laser power standards with natural convective cooling[J]. Optics Express, 2016, 24(2): 935-944. doi: 10.1364/OE.24.000935
|