Volume 66 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
BAI Xuejiao, ZHU Haijiang. Simulation-based Study on Factors Affecting Ultrasonic Thickness Measurements of High Temperature Pipelines[J]. Metrology Science and Technology, 2022, 66(2): 55-60. doi: 10.12338/j.issn.2096-9015.2021.0538
Citation: BAI Xuejiao, ZHU Haijiang. Simulation-based Study on Factors Affecting Ultrasonic Thickness Measurements of High Temperature Pipelines[J]. Metrology Science and Technology, 2022, 66(2): 55-60. doi: 10.12338/j.issn.2096-9015.2021.0538

Simulation-based Study on Factors Affecting Ultrasonic Thickness Measurements of High Temperature Pipelines

doi: 10.12338/j.issn.2096-9015.2021.0538
  • Available Online: 2021-12-29
  • Publish Date: 2022-02-18
  • Aiming at the problem of pipe thickness measurement under high temperature in the petrochemical industry, this paper investigates factors affecting high temperature pipe thickness measurements based on ultrasonic spectrum, and develops an ultrasonic thickness measurement simulation system. In the simulation experiment, the influence of different thickness, different materials, different noise levels and different temperatures on the measurement results are discussed. In addition, the influence of different thickness measurement methods on the measurement of pipe thickness is compared. The experiment results show that the system can simulate the high temperature ultrasonic thickness measuring system and measure the high temperature pipe thickness.
  • loading
  • [1]
    朱文胜, 张东阳, 高磊, 等. 炼厂易腐蚀管线高温测厚技术的研究及应用[J]. 管道技术与设备, 2006(3): 33-36. doi: 10.3969/j.issn.1004-9614.2006.03.014
    [2]
    沈功田. 中国无损检测与评价技术的进展[J]. 无损检测, 2008(11): 787-793.
    [3]
    吴时红, 何双起, 陈颖, 等. 金属薄板超声无损检测[J]. 宇航材料工艺, 2007(6): 124-126. doi: 10.3969/j.issn.1007-2330.2007.06.031
    [4]
    林敏, 黄劼, 甘芳吉, 等. 基于特征点的在线超声波测厚系统性能诊断[J]. 无损检测, 2019, 41(5): 56-60. doi: 10.11973/wsjc201905013
    [5]
    王相豪. 电磁超声测厚系统的设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [6]
    Janez R, Grosse Christian U. Thickness Measurement via Local Ultrasonic Resonance Spectroscopy[J]. Ultrasonics, 2020(109): 10621.
    [7]
    C. Fei, T. Zhao, J. Zhang, et al. 0.36BiScO3-0.64PbTiO3 piezoelectric ceramics for high temperature ultrasonic transducer applications[J]. Journal of Alloys and Compounds, 2018(743): 365-371.
    [8]
    L. Yang, F. Gao, S. Gao. The application of buffer rod in high temperature pipeline corrosion ultrasonic monitoring[C]. Proceedings of 2014 International Conference on Industrial Electronics and Engineering(ICIEE 2014). Hong Kong, 2014: 27-35.
    [9]
    朱明, 袁易全. 一种新颖高温超声测厚实验系统研究(Ⅱ)—测控系统与信号处理技术[J]. 计量学报, 2001, 22(3): 5.
    [10]
    江航成, 林明星, 李杭, 等. 超声波燃气表流场扰动影响测试方法研讨[J]. 计量科学与技术, 2021, 65(12): 40-44. doi: 10.12338/j.issn.2096-9015.2021.0138
    [11]
    江泽涛. 温度对超声波波速及应力测量的影响[J]. 无损检测, 1999(6): 245-248.
    [12]
    王辉, 刘丁发, 张强. 计量核查技术在气体超声计量系统性能评价中的应用[J]. 计量科学与技术, 2021, 65(4): 68-73,77.
    [13]
    P. Ngamsup, A. Prateepasen, M. Noipitak. Factors Affected on the Deviation of the Thickness Measurement by Using Ultrasonic Wave[C]. Proceedings of 2015 International Conference on Power Electronics and Energy Engineering (PEEE 2015). HongKong, 2015: 169-172.
    [14]
    吴燕康. 基于超声波的高精度管道流体温度快速测量方法的研究[D]. 杭州: 中国计量大学, 2018.
    [15]
    嵇杉. 超声波测厚技术在压力管道管件壁厚测量中的问题研究[J]. 化工安全与环境, 2019, 49(20): 14-15.
    [16]
    王志伟, 高斌, 肖湘. 输油管道自校正超声波在线监测系统[J]. 无损检测, 2021, 43(1): 34-38. doi: 10.11973/wsjc202101009
    [17]
    张伟星, 李建民, 薛鹏飞, 等. 细管道中流速的超声相关法测量[J]. 声学技术, 2021, 40(1): 64-70.
    [18]
    李云飞, 杨效龙, 张飞, 等. 管道检测用圆弧形复合超声波振子设计[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 34-39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(8)

    Article Metrics

    Article views (51) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return